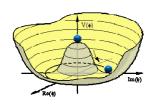
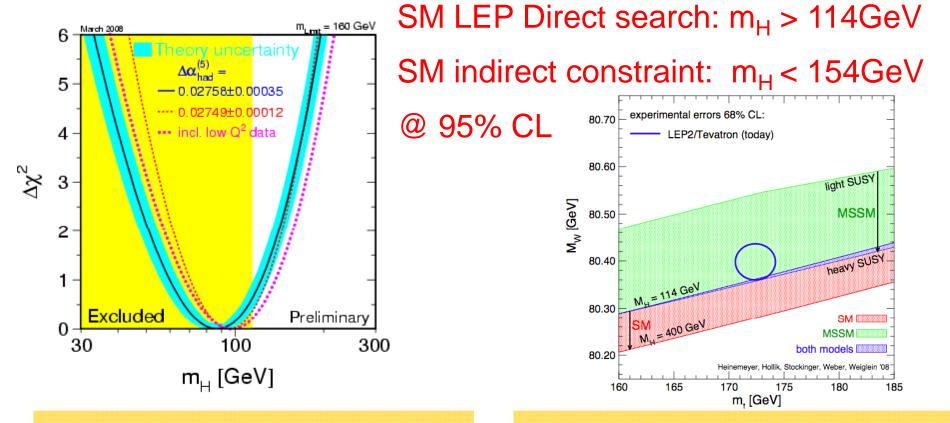

Searches for the Higgs Boson at the Tevatron Matthew Herndon, University of Wisconsin Madison US CMS JTERM III Meeting

Searches for the Higgs Boson

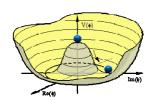
- Introduction
- Tools of the Trade
- BSM Higgs Searches
- SM Higgs Searches
- Combination of SM Higgs Results
- Conclusions



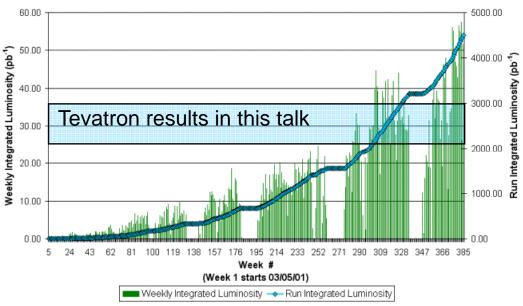
Electroweak Symmetry Breaking


- An experimentalists conception
- Consider the Electromagnetic and the Weak Forces
- Coupling at low energy: EM: $\sim \alpha$, Weak: $\sim \alpha/(M_{W,Z})^2$
 - Fundamental difference in the coupling strengths at low energy, but apparently governed by the same dimensionless constant
 - Difference due to the massive nature of the W and Z bosons
- SM postulates a mechanism of electroweak symmetry breaking via the Higgs mechanism
 - Results in massive vector bosons and mass terms for the fermions
 - Directly testable by searching for the Higgs boson

A primary goal of the Tevatron and LHC

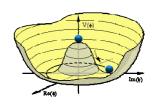

Electroweak Constraints

- Higgs couples strongly to massive particles
 - Introduces corrections to W and top masses sensitivity to Higgs mass


SM: We know where to look

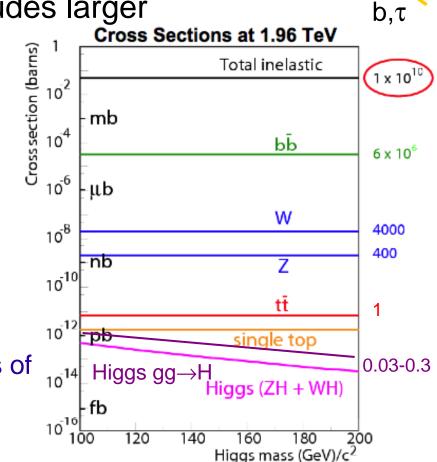
SUSY Higgs looks interesting

Colliders and Experiments

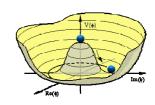

- Tevatron: 2TeV pp collider with two general purpose detectors: CDF, DØ Collider Run II Integrated Luminosity
 - Excellent lepton Id
 - Good to excellent calorimeters for jet and MET reconstruction
 - Excellent silicon detectors for b jet identification
 - Higgs analysis uses full capabilities of the detectors

Given a SM Higgs

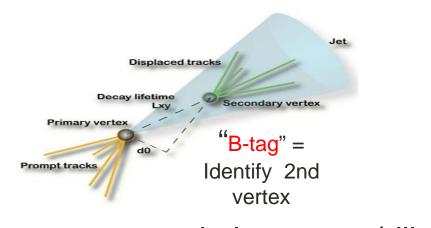
Tevatron: Higgs mass exclusions and perhaps evidence

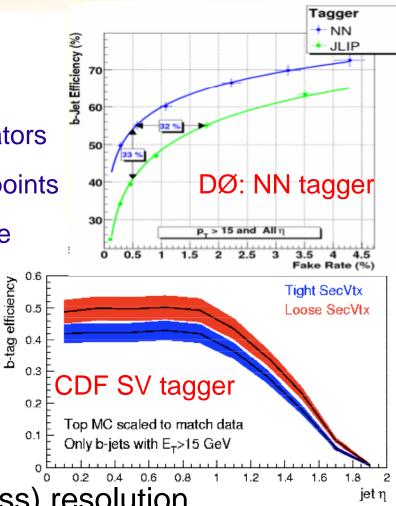

LHC: Observation over full mass range. Study Higgs properties

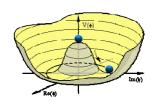
Tools: Triggers and Leptons


- Higgs decays to heavy particles
- Extract handful of Higgs events from a background 11 orders of magnitudes larger
- Primary triggers: High p_T e and μ
 - Jet+MET triggers: modes with no charged leptons, supplement lepton triggers for gaps in coverage
 - Dedicated τ triggers: track+MET+Cal Energy
- Lepton Id
 - Optimize lepton Id on large samples of W, Z bosons

Maximizing Higgs acceptance

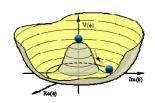

b,τ


Н


Tools: b quark jets

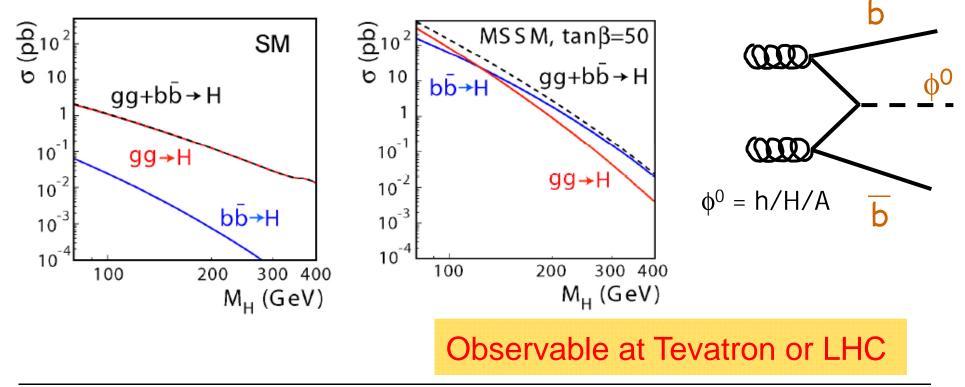
- b jet tagging
 - CDF: Secondary Vertex tagger, jet probability tagger, and NN flavor separators
 - DØ: NN tagger with multiple operating points
 - 40-70% Efficient with 0.3-5% mistag rate

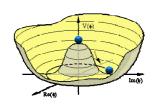
- Improvements in jet energy(dijet mass) resolution
 - Jet energy measurement combining calorimeter and tracking information
 - NN based jet energy corrections, constrained kinematic fits



Tools: Backgrounds

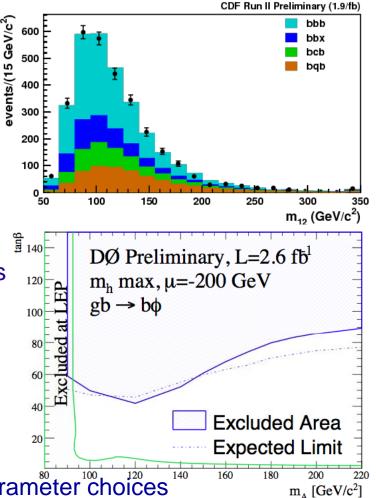
- SM processes create a variety backgrounds to Higgs detection
- Discovery analyses: WW, WZ, ZZ, single top, and even top pairs
- Total and differential cross section measurements
 - QCD dijets, W+c, W+b, Z+b
- Critical to Higgs
 - Some backgrounds cannot be predicted using MC. QCD with fake lepton signatures
 - Constrain background predictions
 - Testing ground for tools and techniques
 - Control regions

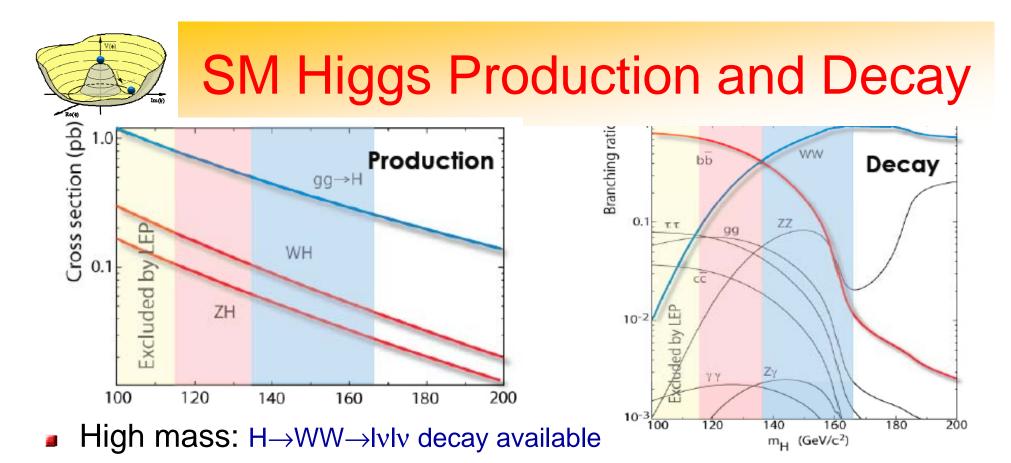

Higgs search built on a foundation of the entire collider physics program

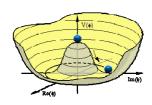


BSM Higgs

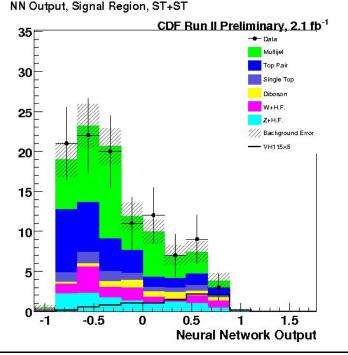
- Many Beyond the Standard Model Higgs Possibilities
 - SUSY Higgs: $tan\beta$ enhanced couplings to b quarks and tau leptons
 - h, H, A, H⁺, H⁻ or alternative models with doubly charged Higgs
 - Fermiophobic Higgs with enhanced couplings to W bosons or photons






- CDF and DØ 3b channel: $b\phi \rightarrow bbb$.
 - Di-b-jet background too large in $\phi \rightarrow$ bb channel
 - Search for peak in di-b-jet mass distribution of leading jets
- Key issue: understanding the quark content of the 3 jets
 - CDF: Secondary vertex tagger and vertex mass
 - D0: NN tagger using multiple operating points 0
 - Simulation/data driven studies of background
- No Evidence for Higgs:
 - Limits $tan\beta vs m_A$
 - 3b search very sensitive with certain SUSY parameter ¹⁰⁰ holices
 - $\phi \rightarrow \tau \tau$ and $b\phi \rightarrow b \tau \tau$ of similar sensitivity.

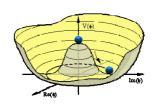
Six SUSY Higgs searches with sensitivity to $\tan\beta$: 40-50, combination interesting M. Herndon, CMS JTERM II 2009



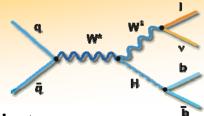
- Take advantage of large $gg \rightarrow H$ production cross section, ZZ in progress
- Low Mass: H→bb, QCD bb background overwhelming
 - Use associated production with W or Z for background discrimination
 - WH→lvbb, ZH→vvbb (MET+bb), ZH→llbb
 - Also: VBF Production, VH \rightarrow qqbb, H \rightarrow tt(with 2jets), H \rightarrow $\gamma\gamma$, WH->WWW, ttH

SM Higgs: VH→METbb

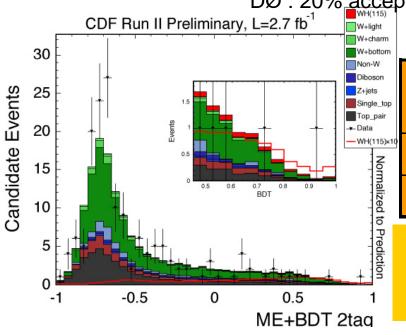
- $ZH \rightarrow vvbb$, $WH \rightarrow lvbb(l not detected)$ signature: MET and b jets $\overline{}$
 - Primary Bkg: QCD b jets and mistagged light quark jets with false MET
 - Key issue: Building a model of the QCD background
 - . Shape from 0 and 1 b tagged data samples with tag and mistag rates applied
 - Innovations:



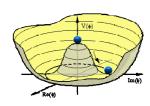
CDF/DØ: Use of track missing p_T to define control regions and suppress backgrounds


CDF: Uses of H1 Jet Algorithm combining tracking and calorimeter information 3 jet events including W→τμ acceptance DØ also performs a dedicated W→τμ

Results at mH = 115GeV: 95%CL Limits/SM


Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF NN, new	2.1	7.6	5.5	6.6
DØ BDT	2.1	3.7	8.4	7.5

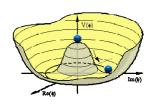
SM Higgs: WH→lvbb


- WH \rightarrow Ivbb signature: high pT lepton, MET and b jets
 - Backgrounds: W+bb, W+qq(mistagged), single top, Non W(QCD)
 - Single top: yesterday's discovery is today's background
 - Key issue: estimating W+bb background
 - Shape from MC with normalization from data control regions
 - Innovations: CDF: 20% acceptance from isolated tracks, ME with NN jet corrections

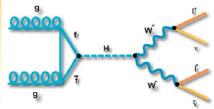
DØ : 20% acceptance from forward leptons, use 3 jet events

om					
n top ir	Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
5)×10	CDF NN+ME+BDT new	2.7	8.4	4.8	5.8
	DØ NN	1.7	7.5	8.5	9.3
Normalized to Bradiation	Worlds most sen search - Sti				00

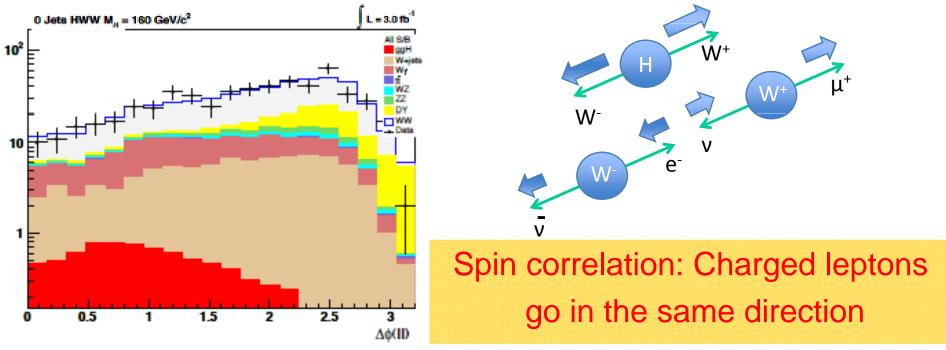
Results at mH - 115GeV/ 95%CL Limits/SM

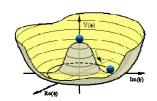

Low Mass Higgs Searches

 We gain our full sensitivity by searching for the Higgs in every viable production and decay mode

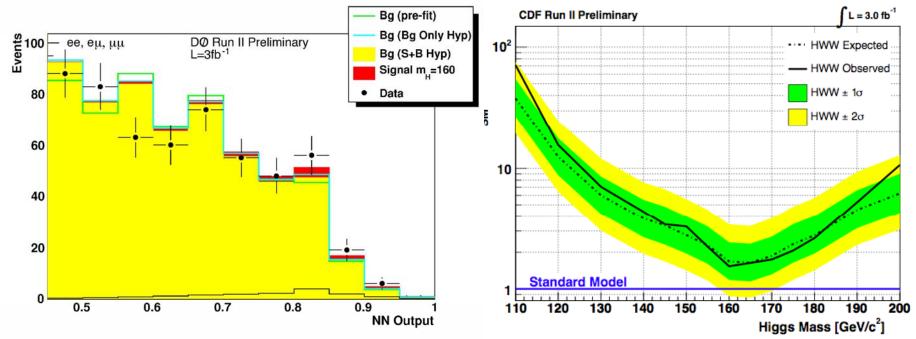

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF NN: ZH→llbb, new	2.7	2.2	9.9	7.1
DØ NN,BDT	2.3	2.0	12.3	11.0
CDF NN: VH→METbb, new	2.1	7.6	5.5	6.6
DØ BDT	2.1	3.7	8.4	7.5
CDFComb: WH→lvbb, new	2.7	8.4	4.8	5.8
DØ NN	1.7	7.5	8.5	9.3

- With all analysis combined we have a sensitivity of <2.5xSM at low mass.
- A new round of analysis, 2x data and 1.5x improvements will bring us to SM sensitivity.


O 4.5 2.5 2.5 1.5 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	DØ Runll Preliminary 0 Data W+jets QCD multijet Top Other SM bac H+(W/Z) x 10	*grounds
Analysis: Limits	Exp. Limit	obs. Limit
CDF WH→WWW	20	25
DØ WH→WWW	20	26
DØ H→γγ	23	31
CDF H→ττ	25	31
CDF VH→qqbb	37	37
DØ WH→τvbb	42	35
DØ ttH	45	64

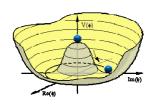

SM Higgs: H→WW

- $H \rightarrow WW \rightarrow I_V I_V$ signature: Two high p_T leptons and MET
 - Primary backgrounds: WW and top in di-lepton decay channel
 - Key issue: Maximizing lepton acceptance
 - Innovations: CDF/DØ : Inclusion of acceptance from VH(CDF) and VBF

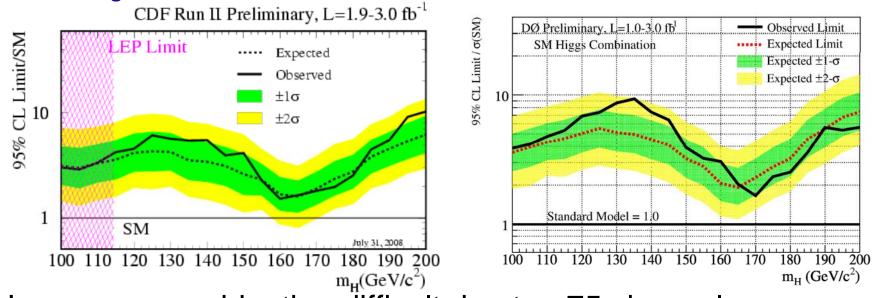


CDF : Combination of ME and NN approaches, DØ Re-optimized NN

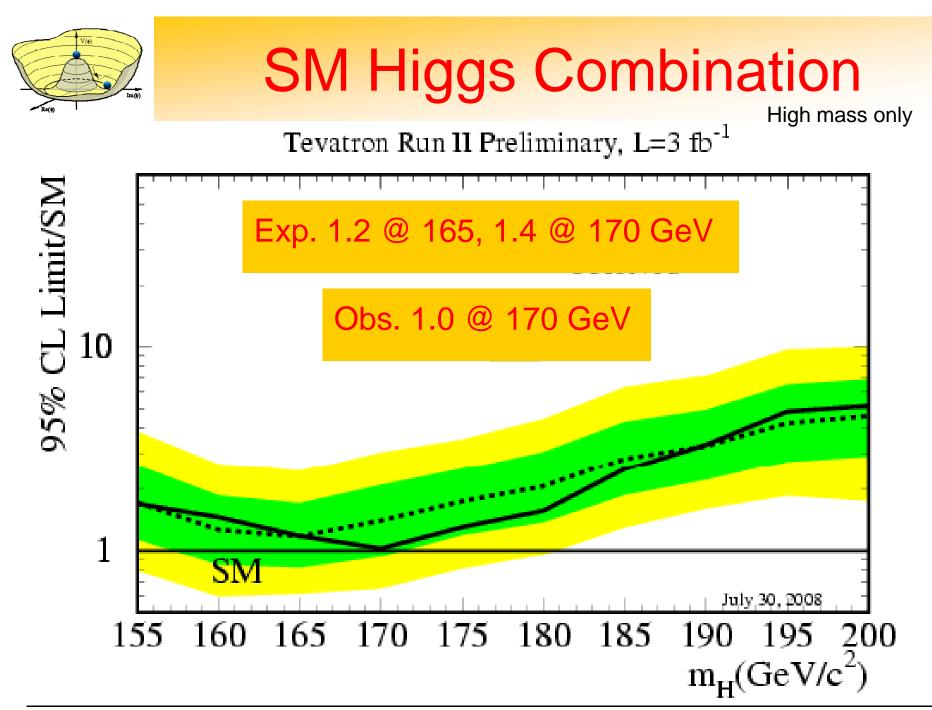
SM Higgs: H→WW

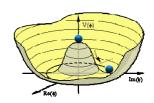

Most sensitive Higgs search channel at the Tevatron

Results at mH = 165GeV : 95%CL Limits/SM

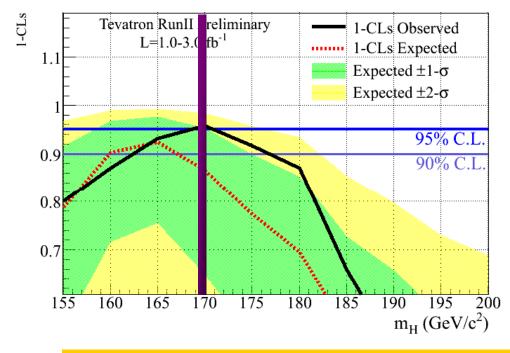

Both experiments Approaching SM sensitivity!

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF ME+NN	3.0	17.2	1.6	1.6
DØ NN	3.0	15.6	1.9	2.0



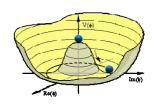

SM Higgs Combined Limits

- Limits calculation and combination
 - Using Bayesian and CLs methodologies.
 - Incorporate systematic uncertainties using pseudo-experiments (shape and rate included) (correlations taken into account between experiments)
 - Backgrounds can be constrained in the fit


- Low mass combination difficult due to ~75 channels
 - Expected sensitivity of CDF/DØ combined: <2.5xSM @ 115GeV</p>

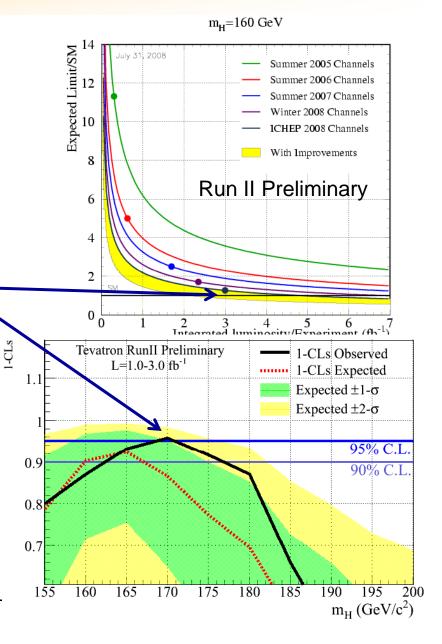
SM Higgs Combination

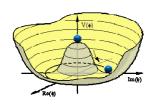
Result verified using two independent methods(Bayesian/CLs)



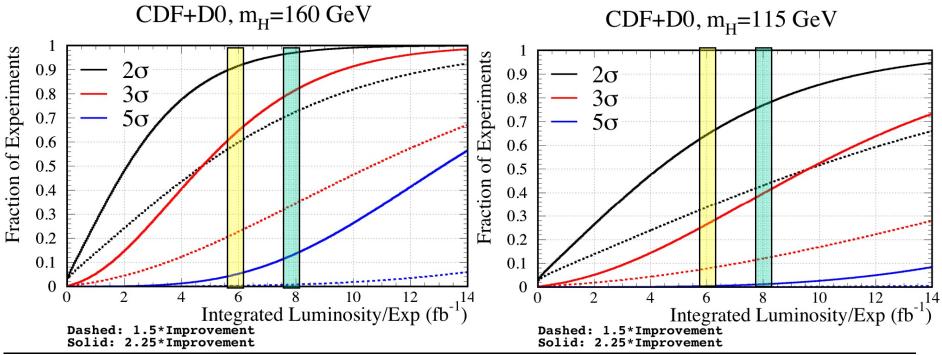
M Higgs(GeV)	160	165	170	175		
Method 1: Exp	1.3	1.2	1.4	1.7		
Method 1: Obs	1.4	1.2	1.0	1.3		
Method 2: Exp	1.2	1.1	1.3	1.7		
Method 2: Obs	1.3	1.1	0.95	1.2		

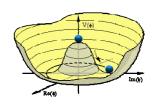
95%CL Limits/SM


SM Higgs Excluded: $m_H = 170 \text{ GeV}$


 We exclude at 95% C.L. the production of a SM Higgs boson of 170 GeV

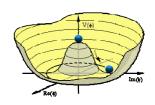
Projections


- Goals for increased sensitivity achieved
 - Goals set after 2007 Lepton Photon conference
 - First stage target was sensitivity for possible exclusion at high mass
 A a similar magnitude improvement factor target was set at low mass
 - Second stage goals in progress
 - Expect large exclusion, or evidence, with full Tevatron dataset and further improvements.

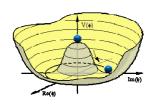


Discovery

- Discovery projections: chance of 3σ or 5σ discovery
 - Two factors of 1.5 improvements examined relative to summer Lepton Photon 2007 analyses.
 - First 1.5 factor achieved for summer ICHEP 2008 analysis
 - Resulted in exclusion at m_H = 170 GeV.



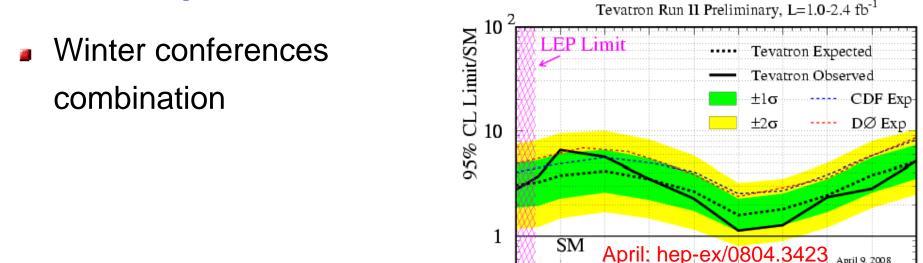
M. Herndon, CMS JTERM II 2009



Conclusions

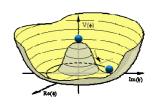
- The Higgs boson search is in its most exciting era ever
 - The Tevatron experiments have achieved sensitivity to the SM Higgs boson production cross section
 - With the advent of the LHC we will have the potential to observe the SM Higgs boson and study it's properties. Tevatron Run II Preliminary, L=3 fb⁻¹
- production of a SM Higgs boson¹⁰₁₀ of 170 GeV ····· Expected We exclude at 95% C.L. the Observed ±lσ ±2σ Expect large exclusion, or evidence, ٥ SM with full Tevatron data set and July 30, 2008 170 175 180 185 160 165 190 195 200 155 improvements $m_{\rm H}({\rm GeV/c}^2)$ SM Higgs Excluded: $m_{H} = 170 \text{ GeV}$

SM Higgs Combined Limits


120

110

130


140 150 160 170

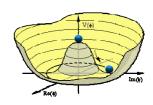
- Limits calculating and combination
 - Using Bayesian and CLs methodologies.
 - Incorporate systematic uncertainties using pseudo-experiments (shape and rate included) (correlations taken into account between experiments)
 - Backgrounds can be constrained in the fit

180 190 200

 $m_{\rm H}({\rm GeV/c}^2)$

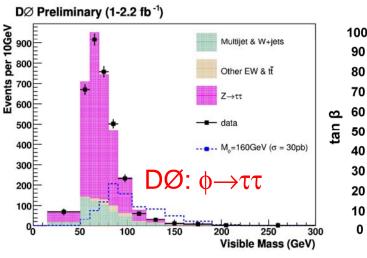
H→WW Some Details

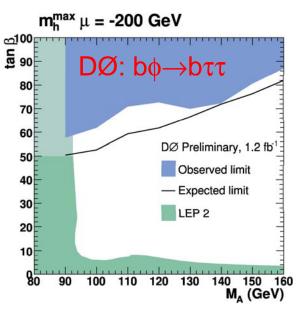
- Used NNLL cross section: S. Catani, D. de Florian, M. Grazzini, and P. Nason, JHEP 07, 028 (2003), hep-ph/0306211 with CTEQ5L
 - Include VH and VBF Higgs production
 - Include two loop EW diagrams:
 U. Aglietta, B. Bonciani, G. Degrassi, and A. Vivini (2006), hep-ph/0610033.
 - Kinematics HNNL0 S. Catani and M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007),
- hep-ph/0703012. JHEP 0802, 043 (2008), hep-ph/0801.3232.
 Work in progress to update to state of the art predictions
 - Latest gluon PDF, full treatment of EW contribution, better treatment of quark masses
 C Anastasiou, R Boughezal, F Petriello, hep-ph/0811.3458

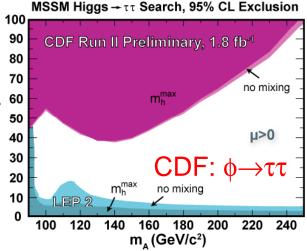

Example systematic table

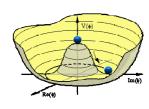
- Rates and shapes considered
- Shape: Scale variations, ISR, gluon pdf, Pythia vs. NNL0 kinematics, jet energy scale: for signal and backgrounds. Included in limit setting if significant.

	CDF: $H \to WW \to \ell^{\pm}\ell'^{+} + 0$ Jets Analysis										
Uncertainty Source	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W+jet	$gg \rightarrow H$	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%			
Acceptance											
Scale (leptons)								2.5%			
Scale (jets)								4.6%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.5%			
PDF Model (jets)								0.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%					
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%			
Conversion Modeling						20.0%					
Jet Fake Rates											
(Low S/B)							21.5%				
(High S/B)							27.7%				
MC Run Dependence	3.9%			4.5%		4.5%		3.7%			
Lepton ID Efficiencies	2.0%	1.7%	2.0%	2.0%	1.9%	1.4%		1.9%			
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%		3.3%			
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		5.9%			

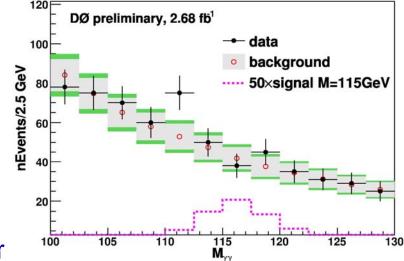

Treatment developed jointly by CDF and DØ

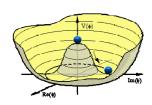

M. Herndon, CMS JTERM II 2009



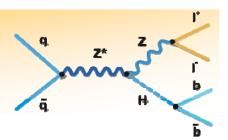

BSM Higgs: $\phi \rightarrow \tau \tau$

- CDF and DØ $\phi \rightarrow \tau \tau$ channel
 - $\tau\tau$ pure enough for direct production search
 - DØ adds associated production search: $b \varphi {\rightarrow} b \tau \tau$
- Key issue: understanding τ Id efficiency
 - Large calibration samples: W for Id optimization and Z for confirmation of Id efficiency
- No Evidence for SUSY Higgs
 - Limits: $tan\beta$ vs m_A
 - φ→ττ generally sensitive at high tanβ

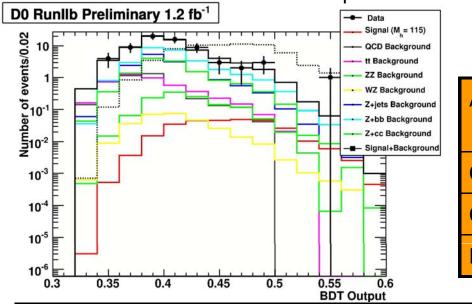




BSM/SM Higgs Searches

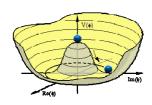

- **■** H→γγ
 - At lower mass large BR(H→γγ) ~10%
 for Fermiophobic Higgs
 - SM search also sensitive at low mass
 - Key issue: understanding QCD background: uses excellent calorimeter
 - CDF has not yet calculated SM limits
- WH→WWW
 - Strong sensitivity as both a SM and a fermiophobic Higgs search
 - Same sign dilepton signature
 - SM Search sensitive at high and medium mass

Analysis: Limits at 160 and 115GeV	Exp. Limit	obs. Limit
DØ H→γγ	23	31
CDF WH→WWW new	20	25
DØ WH→WWW	20	26

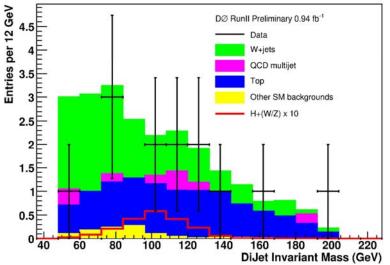

SM Higgs: ZH→llbb

- ZH→IIbb signature: two leptons and b jets
 - Primary background: Z + b jets
 - Key issue: Maximize lepton acceptance and b tagging efficiency
 - Innovations: CDF/DØ: Extensive use of loose b tagging

CDF: Use of isolated tracks and calorimeter only electrons,


MET used to correct jet energies, ME analysis

DØ : Multiple advanced discriminates, NN and BDT


Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit		
CDF NN new	2.7	2.2	9.9	7.1		
CDF ME(120)	2.0	1.4	15.2	11.8		
DØ NN,BDT	2.3	2.0	12.3	11.0		

Results at mH – 115GeV: 95%CL Limits/SM

Other SM Higgs Searches

- CDF and DØ are performing searches in every viable mode
 - CDF: VH→qqbb: 4 Jet mode.
 - CDF: $H \rightarrow \tau \tau$ with 2jets
 - Simultaneous search for Higgs in VH, VBF and gg→H production modes
 - Interesting benchmark for LHC
 - DØ: WH→τνbb
 - Dedicated search with hadronic τ decays
 - DØ: ttH
 - Leverages strong coupling to top

Analysis: Limits at 160 and 115GeV	Exp. Limit	obs. Limit
CDF VH→qqbb	37	37
CDF H→ττ	25	31
DØ WH→τνbb	42	35
DØ ttH	45	64