Higgs Results at CMS

Guillelmo Gómez-Ceballos

Massachusetts Institute of Technology

August 2016 CERN

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

- This is not a fully comprehensive talk, but rather a collection of highlights
- Focus on the most recent 13 TeV results
- Apologize if I left behind your favorite topic, do not hesitate ask if you have questions!

On the upper right side of the slides I include references to the most recent CMS public material

Taking Data at $\sqrt{s} = 13$ TeV

 \blacktriangleright \mathcal{L} = 2 – 3 fb⁻¹ in 2015, much faster pace in 2016

 \blacktriangleright 2016 "ICHEP" dataset: \sim 13 ${
m fb}^{-1}$

Some Terminology

95% Confidence Level (CL) upper

limits as a function of the mass

Scans of profile likelihood of a given observable

・ロン ・四 と ・ 日 と ・ 日 ・

4

Summary of Run-I Higgs Results

- Combined measurement using LHC run-I dataset:
 - $m_{\rm H} = 125.09 \pm 0.21 \, (stat.) \pm 0.11 \, (syst.) \, {\rm GeV}$
 - overall precision 0.19%
- Couplings consistent with Standard Model (SM) Higgs boson
- No additional Higgs bosons found so far

Introduction

- Several ways to find Physics Beyond the Standard Model (BSM) involving Higgs bosons:
 - measuring couplings and differential distributions of known SM Higgs boson decays:
 - main modes: ZZ, WW, $\gamma\gamma$, $\tau\tau$, $b\bar{b}$
 - (less) rare modes: $\mu\mu$, $Z\gamma$, $\gamma^*\gamma$, ee
 - very difficult modes (at LHC): ss, cc, gg
 - ▶ production modes: $gg \rightarrow H$, qqH, VH, $t\bar{t}H$, tqH, $b\bar{b}H$
 - searching for additional Higgs bosons:
 - direct searches for low mass (pseudo-)scalars (NMSSM...)
 - ▶ direct searches for heavy Higgs bosons (2HDM, H^{±±}...)
 - ► searching for particle decays involving Higgs bosons, e.g.:
 - $t \rightarrow cH$
 - $\blacktriangleright \quad \tilde{\chi}^0_1 \to \mathrm{H}\tilde{\mathcal{G}}, \ \tilde{t}_2 \to \tilde{t}_1\mathrm{H} \to t\tilde{\chi}^0_1\mathrm{H}, \ \tilde{\chi}^\pm_1\tilde{\chi}^0_2 \to \mathrm{W}^\pm\tilde{\chi}^0_1\mathrm{H}\tilde{\chi}^0_1$
 - $H + E_T^{miss}$
 - searching for rare neutral Higgs boson decays:
 - either forbidden or a branching fraction well below the experimental reach within the SM
- ► Focus on analyses with experimental (public) CMS results

Main Production Modes

7

Signatures

- "SM" Higgs boson and other neutral Higgs bosons
 - $\mathrm{H} \to \gamma \gamma / \mathrm{ZZ} / \mathrm{WW} / \tau \tau / b \overline{b} / \mu \mu / \mathrm{Z} \gamma$
- Rare (or forbidden) Higgs boson decays
 - ▶ $H \rightarrow inv./inv. + \gamma/prompt$ electron jets/long lived...
- Charged Higgs bosons
 - $\blacktriangleright \mathrm{H^+} \to \tau \bar{\nu} / t \bar{b} / c \bar{s} / c \bar{b} / \chi^0 \chi^+ / W^+ \mathrm{H} / \mathrm{W^+Z}$
- Doubly charged Higgs bosons
 - ▶ $H^{\pm\pm} \rightarrow WW/4\ell$
- Higgs bosons to Higgs bosons decays
 - ▶ $H \rightarrow ZA/Zh$
- Di-Higgs bosons
 - ► $(H \rightarrow)hh \rightarrow b\bar{b}\gamma\gamma/b\bar{b}\tau\tau/b\bar{b}b\bar{b}/b\bar{b}WW/WW\gamma\gamma...$
 - $H \rightarrow a_1 a_1 \rightarrow \mu \mu \mu \mu \mu \mu \tau \tau / \tau \tau \tau \tau / b \bar{b} \tau \tau$

In case of a discovery, signatures of new Higgs bosons can also be due to other new particles (e.g. SUSY particles)

Neutral Higgs Bosons

${ m H} ightarrow \gamma \gamma$ - HIG-16-020 (I)

- Clean signature under a huge background
- Complicated analysis to squeeze all the data information
 - Best of the best ECAL calibrations
 - MVA to select event vertex
 - MVA to select photons
 - MVA to select photon pairs
- Split in many categories to improve signal-to-background ratio (S/B) and separate production modes

Event Categories	SM 125GeV Higgs boson expected signal						Bkg	
Event categories	Total	ggh	vbf	wh	zh	tth	σ_{eff}	(GeV^{-1})
Untagged Tag 0	11.92	79.10 %	7.60 %	7.11 %	3.59 %	2.60 %	1.18	4.98
Untagged Tag 1	128.78	85.98 %	7.38 %	3.70 %	2.12 %	0.82 %	1.35	199.14
Untagged Tag 2	220.12	91.11 %	5.01 %	2.18 %	1.23 %	0.47 %	1.70	670.44
Untagged Tag 3	258.50	92.35 %	4.23 %	1.89 %	1.06 %	0.47 %	2.44	1861.23
VBF Tag 0	9.35	29.47 %	69.97 %	0.29 %	0.07 %	0.20 %	1.60	3.09
VBF Tag 1	15.55	44.91 %	53.50 %	0.86 %	0.38 %	0.35 %	1.71	22.22
TTH Hadronic Tag	2.42	16.78 %	1.28 %	2.52 %	2.39 %	77.02 %	1.39	1.12
TTH Leptonic Tag	1.14	1.07 %	0.08 %	2.42 %	1.06 %	95.38 %	1.62	0.42
Total	647.79	87.93 %	7.29 %	2.40 %	1.35 %	1.03 %	1.88	2762.65
					< □ >	· • 🗗 > •	E ► < 3	≜▶ ∃ う

$\mathrm{H} ightarrow \gamma \gamma$ - HIG-16-020 (II)

${ m H} ightarrow \gamma \gamma$ - HIG-16-020 (III)

12

$H \rightarrow ZZ \rightarrow 4\ell$ - HIG-16-033 (I)

- Clean signature under a small background, but tiny signal yield
- Complicated analysis to add as much sensitivity as possible:
 - make use of m_{4ℓ} vs. kinematic discriminator vs. mode categorization
 - make use of low p_T leptons, sophisticated lepton selections
- Differential/fiducial cross section measurements at 13 TeV has also started
- Almost identical analysis used for high mass searches

$H \rightarrow ZZ \rightarrow 4\ell$ - HIG-16-033 (II)

14

$H \rightarrow ZZ \rightarrow 4\ell$ - HIG-16-033 (III)

- $\sigma_{\text{fid.}} = 2.29^{+0.74}_{-0.64} (\text{stat.})^{+0.30}_{-0.23} (\text{sys.})^{+0.01}_{-0.05} (\text{model dep.}) \text{ fb}$ $(\sigma_{\text{fid.}}^{\text{SM}} = 2.53 \pm 0.13 \text{ fb})$
- $m_{\rm H} = 124.50^{+0.47}_{-0.45}$ (stat.) $^{+0.13}_{-0.11}$ (sys.) GeV
- Other performed measurements: width, anomalous couplings, high mass searches

$H \rightarrow WW \rightarrow 2\ell 2\nu$ - HIG-15-003 (2015)

- Two high p_T isolated leptons and moderate E_T^{miss}
- Large $\sigma \times BR$ and clean final state
- No mass peak is the main drawback
- Controlling the background is the key
- Using 0-jet and 1-jet categories only for now (2015 dataset)
- ▶ 2D fit: $m_{\ell\ell}$ vs. m_T
- Signal strength: 0.3 ± 0.5
- Significance: 0.7 (2.0) observed (expected)
- Work on including 2016 dataset

High Mass $H \rightarrow WW \rightarrow 2\ell 2\nu$ - HIG-16-023 (2015)

- Very similar analysis w.r.t. low mass measurement
- Interference between (high mass) signal and $gg \rightarrow WW$ taken into account
- 0-jet, 1-jet, and VBF categories considered
- Using m_T as final discriminant variable
- Providing results for different Higgs boson widths

MSSM $H \rightarrow \tau \tau$ - HIG-16-006 (2015)

- $\blacktriangleright~{\rm H} \rightarrow \tau \tau$ coupling enhanced in MSSM at high tan β
- $\tau_{\ell} \tau_{had}$ and $\tau_{had} \tau_{had}$ channels studied
- Using $m_{\tau\tau}$ as a final discriminant
- Separating ggH and b-associated production
- SM analysis closely related

High Mass $\mathrm{H} ightarrow b ar{b}$ - HIG-16-025 (2015)

- $\blacktriangleright\,$ Inclusive search for a resonance consistent with ${\rm H} \rightarrow b \bar{b}$
- Making use of standard trigger paths: able to profit for full offline quantities
- FSR recovery adding jets close by the selected b-jets
- Mass fit in a window around the hypothesized mass

$t\bar{t}H$ (I) - HIG-16-004/HIG-15-008/HIG-15-005 (2015)

- $\blacktriangleright \ \sigma_{\rm t\bar{t}H}^{\rm 13~TeV}/\sigma_{\rm t\bar{t}H}^{\rm 8~TeV}\sim 4$
- Sensitivity approaching Run 1
- Sensitive to potential new physics contributions
- Final states:
 - $H \rightarrow b\bar{b}$: large BR, low S/B, make use BDT and MEM approaches
 - $\blacktriangleright~~H \rightarrow$ multilepton: small irreducible background, understanding fake leptons a key
 - ${
 m H}
 ightarrow \gamma \gamma$: small yield, part of main analysis
 - ${
 m H}
 ightarrow au au$: relatively large BR, but large backgrounds

$t\bar{t}H$ (II) - 13 TeV Combination (2015)

- Combined 13 TeV results more consistent with SM expectation than run-l results
- Need more data to assess conclusions
- ► High priority analyses in CMS, looking forward the ICHEP results

$\rm t\bar{t}H$ Multilepton with 2016 Data - HIG-16-022

Observed and expected asymptotic 95% CL upper limits on and best fit value

of the signal strength							
Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$				
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$				
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$				
Combined categories	3.9	$1.4^{+0.7}_{-0.4}$	$2.3^{+0.9}_{-0.8}$				
Combined with 2015 data	3.4	$1.3^{+0.6}_{-0.4}$	$2.0^{+0.8}_{-0.7}$				

Observed (expected) significance in a background-only hypothesis 3.2σ (1.7 σ) 3.2σ

$t Hq, H \rightarrow b \overline{b}$ Overview (2015) - HIG-16-019

- Interference in tHq process because $\mathcal{A} \propto (\kappa_{\rm t} \kappa_{\rm V})\sqrt{s} + {\rm const.}$
- SM: both κ 's = +1 by construction \rightarrow destructive interference
- Sensitive to deviations from SM. Flipped top Yukawa cross section → cross section enhanced by factor 11
- Direct search for 51 points in κ_t-κ_V plane
- Also considering tHW as signal

 Challenging multi-jet final state and huge ttbar background requires several layers of MVAs

Validation performed in $t\bar{t}$ control region

$t Hq, H \rightarrow b\bar{b}$ Strategy & Results (2015) - HIG-16-019

- Signal region event selection:
 - One muon/electron
 - Three or four b tagged jets
 - At least one untagged jet
- MVA reconstruction for identifying Higgs/top/recoil jet:
 - Train correct jet-parton matches vs. wrong assignments
 - Evaluation: pick assignment that gives highest MVA response
 - Reconstruction efficiency: > 40%
- Finally: MVA for classifying events as tHq or background-like
 - Most important variables: lepton charge, recoil jet η

Exotic Searches

Invisible Higgs Decays (I)

- The most extensive set of rare decays searches by far
- ▶ It exists in the SM, but extremely rare: $BR(H \rightarrow ZZ \rightarrow 4\nu) \sim 0.1\%$
- Observation of a large rate would be a sign of BSM:
 - LSPs in SUSY (neutralinos, gravitinos)
 - Graviscalars (large extra-dimensions)
 - ► Dark Matter (DM) → limits competitive with other DM searches
- Large missing transverse energy (E_T^{miss}) is the general pattern of all these searches
- Several production modes can be studied:
 - ► qqH (VBF): two forward/backward jets with high $\Delta \eta_{jj}$ & m_{jj}
 - ▶ $Z(\ell\ell/b\bar{b})H$: two leptons/two b-jets compatible with a Z boson

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- $Z/W(q\bar{q'})H$: two jets compatible with a Z/W boson
- ▶ ttH: two top-quarks
- $gg \rightarrow H + jet$: one high p_T jet
- DM searches can directly be re-used for these studies

Invisible Higgs Decays (II) - HIG-16-016 (2011, 2012, 2015 comb.)

- A large set of analyses coming up
- More complex techniques exploited by having a single fit combining signal and background regions
- For $m_{\rm H} = 125 \,\, {
 m GeV}$ will profit from a larger dataset

Invisible Higgs Decays with 2016 Data - EXO-16-037/EXO-16-038

- Mono-jet analysis: multi-fit approach of several signal and control regions
- ▶ Mono- $Z(\rightarrow \ell \ell)$ analysis: single fit to E_T^{miss} with several regions to control different background processes
 - sentivity already better than run-I
- Mono-W (hadronic) and mono-Z (hadronic and leptonic) final states start playing a key role, stat./syst. interplay at higher luminosities

LFV $\mathrm{H} ightarrow \mu au/e au/e \mu$ (I) - hig-14-005/hig-14-040/hig-16-005

- Search for a mass peak at $m_{
 m H} \sim 125~{
 m GeV}$ in $\mu au/e au/e au/e \mu$ pairs
- Split in 0/1/2-jet and in τ decays categories
- Direct limits on $BR(\mathrm{H}
 ightarrow \mu au/e au/e \mu)$ can be established
- Interesting upper fluctuation in the $\mu\tau$ final state at 8 TeV

HIG-14-040, $e\tau/e\mu$ analyses at 8 TeV, recently submitted for publication

LFV $\mathrm{H} ightarrow \mu au/e au/e \mu$ (II) - hig-14-005/hig-14-040/hig-16-005

Need more 13 TeV data to draw conclusions

Summary of BSM Run-I Searches

Search for VBF $H^{\pm} \rightarrow W^{\pm}Z \rightarrow 3\ell\nu$ - HIG-16-027

- Predictions from Georgi-Machack Higgs Triplet Models
- Selecting WZ events with two jets compatible with VBF topology
- Large benefit from a larger dataset and increase on \sqrt{s}
- Performed for first time in CMS, using 2015 and 2016 datasets

Search for $\mathrm{H}^{\pm} \to c\,\bar{b}$ - HIG-16-030

- Search for $t\bar{t} \rightarrow (H^+b)(W^-\bar{b}) \rightarrow (c\bar{b}b)(I^-\bar{\nu}\bar{b})$ decays
- Look for a dijet mass bump compatible with $\mathrm{H}^{\pm}
 ightarrow c ar{b}$
- Dijet pair selected from at least four jets in an event by a kinematic fitter

Double Higgs Boson Production

Di-Higgs Production

- Exciting prospects of the HL-LHC
 - process like di-Higgs production has not been observed yet
 - $\blacktriangleright\,$ gluon fusion cross section is only \sim 40 fb
 - $\blacktriangleright\,$ vector boson fusion cross section is $\sim 2~\text{fb}$
 - challenging measurements
 - enhancement due to new physics scenarios
- Destructive interference in gluon fusion

- Resonant production
 - enhance production cross section

 $\exists \rightarrow$

Search for (Non-)Resonant HH Decays

- Analyses getting mature, but a long way to get SM reach
- One of the high priority LHC analyses in the long term
- Room for improvements and new channels to be added
- Good agreement between data and background prediction so far

Final state	Resonant 8 TeV	Non-resonant 8 TeV	Resonant 8 TeV	Non-resonant 13 TeV
bbbb	HIG-14-013	-	HIG-16-002	On-going
b b WW	-	-	HIG-16-011	HIG-16-024
$b\bar{b}\tau\tau$	HIG-15-013	HIG-15-013	HIG-16-013	HIG-16-012
5511	1.10 10 010	110 10 010	HIG-16-028	HIG-16-029
$b\bar{b}\gamma\gamma$	HIG-13-032	HIG-16-032	On-going	On-going

Summary of run-I resonant analyses

HH Analyses with 2016 Data - HIG-16-029/HIG-16-028/HIG-16-024

BDT output, m. bins

3

38

- The H(125) boson measurements start becoming rather precise with 2016 data
- A lot of room for improvements at $\sqrt{s} = 13$ TeV, fun has just started

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- ▶ No sign of new physics in Higgs sector yet, but stay tuned!
- You can find all CMS Higgs results on: http://cms-results.web.cern.ch/cms-results/publicresults/publications/HIG/index.html

Most Recent CMS Higgs Results

- HIG-16-020: $H \rightarrow \gamma \gamma$ (2016)
- ▶ HIG-16-033: $H \rightarrow ZZ \rightarrow 4\ell$ (2016)
- ▶ HIG-16-022: ttH-multilepton (2016)
- ▶ HIG-16-029: $X \rightarrow \text{HH} \rightarrow b\bar{b}\tau\tau$ (2016)
- ▶ HIG-16-028: non-resonant $HH \rightarrow b\bar{b}\tau\tau$ (2016)
- ▶ HIG-16-024: non-resonant *bb*WW (2016)
- HIG-16-023: high mass $H \rightarrow WW$ (2015)
- HIG-16-025: high mass $\mathrm{H} \rightarrow b\bar{b}$ (2015)
- ▶ HIG-16-027: VBF $H^{\pm} \rightarrow WZ$ (2015+2016)
- HIG-16-030: $\mathrm{H}^{\pm} \rightarrow c \, \bar{b}$ (8 TeV)
- ▶ HIG-16-019: *t*H*q* (2015)
- ▶ HIG-16-016: $H \rightarrow invisible (2011+2012+2015)$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- EXO-16-027: mono-jet (2016)
- ▶ EXO-16-038: mono-Z (2016)

Back-Up Slides

${ m H} ightarrow bar{b}$ (MSSM) - HIG-14-017

- $\blacktriangleright\,$ Search for ${\rm H} \to b \bar{b}$ resonances at high mass
- Final states usually have additional b-quarks
- Dedicated trigger paths to select these events (no high p_T leptons/photons, no high E_T^{miss})

• $X_{123} = (B_1 + B_2) + (B_3)$ to split in categories

$\mathrm{H} ightarrow \mu^+ \mu^-$ - HIG-13-024/HIG-13-007

- Two isolated muons in the final state
- ▶ Split in several categories to improve S/B and mass resolution
- Cross section limits about 5-8 times the SM expectation

Event Rates \rightarrow Coupling Deviations

- $\sigma(xx \to H) \times BR(H \to yy) \propto \Gamma_{xx}\Gamma_{yy}/\Gamma_{tot}$
- ► Parameters: Γ_{WW} , Γ_{ZZ} , Γ_{tt} , $\Gamma_{\tau\tau}$, $\Gamma_{b\bar{b}}$, $\Gamma_{\gamma\gamma}$, Γ_{gg} , Γ_{BSM} (assumed = 0 in most of studies), Γ_{tot}
- Coupling modifiers: $\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{SM}}$ (production processes) or $\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i^{SM}}$ (decays processes)

$$\blacktriangleright (\kappa_V, \kappa_f): \kappa_V = \kappa_W = \kappa_Z, \kappa_f = \kappa_b = \kappa_{top} = \kappa_{\tau}, \kappa_{\gamma} = f(\kappa_V, \kappa_f)$$

> All tests performed at a given mass, i.e. the measured $m_{\rm H}$ value

Indirect Limits on Invisible Higgs Decays

- $\blacktriangleright BR_{BSM} = \Gamma_{BSM} / \Gamma_{tot}$
 - All κ_i modifiers are profiled
 - $\kappa_V \leq 1$

$$\blacksquare BR_{inv} = \Gamma_{inv} / \Gamma_{tot}$$

- Combining with data from the $H \rightarrow inv$ searches, thus assuming that $BR_{BSM} = BR_{inv}$, i.e. $BR_{undet} = 0$
- All κ_i modifiers are profiled

• $\kappa_V \leq 1$

Higgs Sector in MSSM

- Higgs sector in SUSY contains two scalar doublets:
 - five physical Higgs bosons:
 - 3 neutral: CP-even Φ = h & H; CP-odd A
 - ▶ 2 charged: H[±]
 - SM-like Higgs boson: h
- Neutral Higgs "Φ" decay modes:
 - $BR(\Phi \rightarrow b\bar{b}) \sim 90\%$
 - $BR(\Phi \rightarrow \tau \tau) \sim 10\%$
 - $BR(\Phi \rightarrow \mu\mu) \sim 0.1\%$
- Two main production modes:
 - ▶ $gg \rightarrow H$
 - ▶ *bb*H

- B-tagged topologies make analyses rather different w.r.t. SM searches
- Observation of H(125) does not exclude a heavy MSSM Higgs boson in a wide range of tanβ, still fits both SM and MSSM
- Signal extraction based on looking for a mass resonance
- ▶ Showing $\Phi \rightarrow \mu\mu$ case here, other analyses in Susan Gascon-Shotkin's talk

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Extended Higgs Sector

Electroweak Singlets

- 2nd CP-even boson
- Two-Higgs Doublet Models (2HDM)
 - ► 5 Higgs bosons (H,h,A,H)
 - MSSM prominent example; hMSSM common benchmark
- 2HDM + singlets
 - NMSSM prominent example
 - ▶ 7 Higgs bosons $(a_1, a_2, h_1, h_2, h_3, H^{\pm})$
- Triplet Models
 - ► adding doubly charged Higgs bosons to 2HDM phenomenology

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

... and more

Summary of $H \rightarrow a_1 a_1$ Run-I Searches

- Summary of several $H \rightarrow a_1 a_1$ Run-I searches for several scenarios
- \triangleright $\sigma_{13 \text{ TeV}}/\sigma_{8 \text{ TeV}} \sim 2.3$
- These analyses more suitable for larger datasets at this point

Other Possible Rare Decays

A summary can be found in e.g. arXiv1312.4992

▶
$$H \rightarrow XX \rightarrow 4b$$

$$\blacktriangleright \text{ H} \rightarrow \textbf{aa} \rightarrow 2b2\tau/2b2\mu/4\tau/2\tau 2\mu$$

- multilepton analyses may be used to put limits on them
- ▶ $H \rightarrow XX \rightarrow 4j$
- ► $H \rightarrow XX \rightarrow 2j2\gamma$
- ► $H \rightarrow XX \rightarrow 4\gamma$
- ► H → aZ
- $H \rightarrow Z_D Z/Z_D Z_D$, with Z_D a new gauge boson
- $H \rightarrow \chi_1 \chi_2 \rightarrow \gamma/2\gamma + E_T^{miss}$
- $\blacktriangleright \text{ H} \rightarrow \ell/\ell\ell/b\bar{b}/\tau\tau + E_{\text{T}}^{\text{miss}}$
 - SUSY analyses may be used to put limits on them

▶ $H \rightarrow one/two \text{ prompt leptons} - jets + X$

Search for Charged Higgs Bosons - HIG-14-023/HIG-13-035

- Predicted in several new Physics scenarios
- For $m_{\mathrm{H}^{\pm}} < m_{top}$, search for $top \rightarrow \mathrm{H}^{\pm}b$ decays
- For $m_{\mathrm{H}^{\pm}} > m_{top}$, mostly search for $t\mathrm{H}^{\pm}(b)$ decays
- $H \rightarrow \tau \nu$ dominates a large phase space, but several other decay modes possible
- ▶ A large room for gain at 13 TeV, this is a long term project

Search for $A/H \rightarrow ZH/A$ Decays - HIG-15-001/HIG-16-010

- ► Search for $A/H \rightarrow ZH/A \rightarrow \ell \ell b \bar{b}$ decays, $H/A \rightarrow \tau \tau$ also considered in run-I analysis
- ▶ Signal region defined in $m_{b\bar{b}}$ $m_{\ell\ell b\bar{b}}$ plane for each m_H - m_A hypotheses
- Simple cut-and-count approach, backgrounds from sideband
- Large room for improvements, e.g. by fitting signal and sidebands regions simultaneously or by having a more sophisticated template fit
- Limits on $\sigma x BR$ for m_H hypotheses as function of m_A

Search for $A \rightarrow Zh(125)$ Decays - HIG-14-011

- Search for $A \to \operatorname{Z}h(125) \to \ell\ell b \overline{b}$ decays
- A particular region of a more general A-H phase space
- Analysis split in three regions: low/intermediate/high masses
- Two-dimensional BDT vs. m_{\lebb} to discriminate signal and backgrounds

More on Summary of BSM Run-I Searches

