Global fits to the latest LHCb data on bsll

Nazila Mahmoudi

Lyon University & CERN

In collaboration with T. Hurth and S. Neshatpour

Inclusive decays $B \to X_s \ell^+ \ell^-$

- Precise theory calculations (see e.g. T. Huber, T. Hurth, E. Lunghi, JHEP 1506 (2015) 176) Theoretical description of power corrections available \rightarrow they can be calculated or estimated within the theoretical approach
- Final results from Belle and Babar still not available!
- Promising situation with Belle II!

Exclusive decays

- Angular distributions of $B \rightarrow K^* \mu^+ \mu^ \rightarrow$ many experimentally accessible observables
- Also: $B
 ightarrow K \mu^+ \mu^-$ and $B_s
 ightarrow \phi \mu^+ \mu^-$
- Issue of hadronic uncertainties in exclusive modes no theoretical description of power corrections existing within the theoretical framework of QCD factorisation and SCET

$b \rightarrow s \ell \ell$ transitions

Inclusive:

Exclusive (2012):

$b \rightarrow s \ell \ell$ transitions

Exclusive (2016):

The situation has changed drastically with the measurements of many angular observables!

 $\begin{array}{l} B \to K^+ \mu^+ \mu^-, \ B \to K^0 \mu^+ \mu^-, \ B \to K^{*+} \mu^+ \mu^-, \ B \to K^{*0} \mu^+ \mu^- \ (F_L, \ A_{FB}, \ S_i, \ P_i), \\ B_s \to \phi \mu^+ \mu^-, \ \dots \end{array}$

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

3 main LHCb anomalies:

• $B \to K^* \mu^+ \mu^-$ angular observables $(P'_5 / S_5,...)$: 3.4σ tension \leftarrow supported by Belle • $R_K = BR(B^+ \to K^+ \mu^+ \mu^-)/BR(B^+ \to K^+ e^+ e^-)$: 2.6σ tension in [1-6] GeV² bin • $BR(B_s \to \phi \mu^+ \mu^-)$: 3.2σ tension in [1-6] GeV² bin

New Physics or theoretical issues?

Many observables \rightarrow Global fits of the latest LHCb data

Relevant \mathcal{O} perators:

$$\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_{9\mu,e}^{(')}, \mathcal{O}_{10\mu,e}^{(')}$$
 and $\mathcal{O}_{S-P} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu) \equiv \mathcal{O}_0'$

 NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Global fits using the latest LHCb results:

M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini, M. Valli, 1512.07157 T. Hurth. FM. S. Neshatoour. 1603.00865

S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, 1510.04239v2

$$\mathcal{C}_{9\mu}$$

Global fits

Experimental errors and correlations

3 fb⁻¹ LHCb data for $B \to K^{*0}\mu^+\mu^-$: JHEP 1602 (2016) 104 And for $B_s \to \phi\mu^+\mu^-$: JHEP 1509 (2015) 179 And for $B \to K\mu^+\mu^-$, R_K : Phys. Rev. Lett. 113 (2014) 151601

More than 100 observables relevant for leptonic and semileptonic decays:

- BR($B \rightarrow X_s \gamma$)
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- BR($B \rightarrow K^{*+}\mu^+\mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B \rightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- *R_K*
- $B \to K^{*0}\mu^+\mu^-$: BR, F_L , A_{FB} , S_3 , S_4 , S_5 , S_7 , S_8 , S_9 in 8 low q^2 and 4 high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

calculations done using SuperIso program

Global fits

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- use for the $B_{(s)} \rightarrow V$ form factors of the lattice+LCSR combinations from 1503.05534, including correlations (Cholesky decomposition method)
- use for the $B \to K$ form factors of the lattice+LCSR combinations from 1411.3161, including correlations
- $\bullet~{\rm for}~B_{\rm s} \to \phi \mu^+ \mu^-$, mixing effects taken into account
- two approaches for the exclusive decays: soft form factors, full form factors
- evaluation of uncertainties from factorisable and non-factorisable power corrections:

$$A_k
ightarrow A_k \left(1 + a_k \exp(i\phi_k) + rac{q^2}{6 \ {
m GeV}^2} b_k \exp(i\theta_k)
ight)$$

Soft: parametrisation of both factorisable and non-factorisable power corrections Full: parametrisation of only non-factorisable power corrections Low recoil: $b_k = 0$ $|a_k|$ between 10 to 60%, $b_k \sim 2.5a_k$

 \Rightarrow Computation of a (theory + exp) correlation matrix

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Global fits

Global fits of the observables by minimization of

$$\chi^2 = ig(ec{O}^{ t th} - ec{O}^{ t exp}ig) \cdot (\Sigma_{ t th} + \Sigma_{ t exp})^{-1} \cdot ig(ec{O}^{ t th} - ec{O}^{ t exp}ig)$$

 $(\Sigma_{\tt th}+\Sigma_{\tt exp})^{-1}$ is the inverse covariance matrix.

Statistical approaches:

•
$$\Delta \chi^2 = \chi^2 - \chi^2_{\rm min}$$
 method

2 Computation for each point of the scan of the difference of χ^2 with the best fit point **3** Find the $1 - 2\sigma$ regions corresponding to the number of d.o.f.

Interpretation: considering the best fit point gives the "real" description, which variations of the parameters are allowed in a given scenario \rightarrow *relative* global fit

\bullet Absolute $\chi^{\rm 2}$ method

- **()** Computation of the χ^2 for each point
- **②** Find the $1 2\sigma$ regions corresponding to N d.o.f. where $N = (N_o \text{ observables} n_v \text{ variables})$
- If an observable is relatively insensitive to the variation of the Wilson coefficients, remove it from the fit

Interpretation: global fit assessing if each point is *globally* in agreement with all the measurements

We need both methods to make sure we have a reasonable fit and maximal information $\checkmark 9$

Nazila Mahmoudi

Fit results for two operators

Using full FFs, assuming 10% power correction errors

$$(C_9 - C_{10})$$

 $(C_9 - C'_9)$

 $(C_{9}^{e} - C_{9}^{\mu})$

68% CL 95% CL - 5% PC err -- 20% PC err

0.2 0.4

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Fit results for two operators

Using full FFs, assuming 10% power correction errors

$$\begin{array}{c} 0.4 \\ 0.2 \\ 0.5 \\ 0.6 \\ -0.8 \\ -0.6$$

Absolute χ^2 method

68% CL 95% CL - 5% PC err -- 20% PC err

68% CL 95% CL 5% PC err

-- 20% PC en

0.0 0.2 0.4

0.0 0.2 0.4

 $\Delta \chi^2$ method

 $(C_9 - C'_9)$

 $(C_9 - C_{10})$

 $(C_{9}^{e} - C_{9}^{\mu})$

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Fit results for two operators

Using full FFs, assuming 10% power correction errors

$$(C_9 - C'_9)$$

 $(C_9 - C_{10})$

$$(C_{9}^{e}-C_{9}^{\mu})$$

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Nazila Mahmoudi

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Not a huge impact!

60% power correction uncertainty leads to only 20% error at the observable level.

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- $\bullet~4~\times$ form factor errors (dotted line)

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- $\bullet~4~\times$ form factor errors (dotted line)

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- $\bullet~4~\times$ form factor errors (dotted line)

The size of the form factor errors has a crucial role in constraining the allowed region!

$$\mathcal{C}_{9\mu}$$

Fit results for two operators: likelihood vs. method of moments

LHCb presented the $B
ightarrow {\cal K}^* \mu^+ \mu^-$ angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust (?), but larger uncertainties

How does the choice of method affect fits? Let's consider only $B \to K^* \mu^+ \mu^-$ measurements.

likelihood fits: solid lines method of moments: filled areas $(C_9 - C'_9)$

Fit results for two operators: likelihood vs. method of moments

LHCb presented the $B \to K^* \mu^+ \mu^-$ angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust (?), but larger uncertainties

How does the choice of method affect fits? Let's consider only $B \to K^* \mu^+ \mu^-$ measurements.

likelihood fits: solid lines method of moments: filled areas

Tension decreases using the method of moments results!

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Role of S_5

Removing S_5 from the fit:

While the tension of $C_9^{\rm SM}$ and best fit point value of C_9 is slightly reduced in the various two operator fits, still the tension exists at more than 2σ

 \rightarrow S₅ is not the only observable which drives C₉ to negative values!

 $\mathcal{C}_{9\mu}$

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Role of R_K

Removing R_K from the fit:

 R_{κ} is the main measurement resulting in the best fit values for C_9^{μ} and C_9^{e} which are in more than 2σ tension with lepton-universality $C_{9\mu}$

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Considering 4 operator fits considerably relaxes the constraints on the Wilson coefficients leaving room for more diverse new physics contributions which are otherwise overlooked. $C_{9\mu}$

Nazila Mahmoudi

Fit results for $C_7, C_8, C_9, C_{10}, C'_0$ with MFV hypothesis

The five operator fit within the MFV framework shows compatibility with the MFV hypothesis.

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Latest version: SuperIso v3.5

Available from http://superiso.in2p3.fr

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

Conclusion

- Latest LHCb results, based on the 3 fb⁻¹ data set and on two different experimental analysis methods, still show some tensions with the SM predictions
- Model independent fits point to $C_9^{NP}\sim -1,$ and new physics in muonic C_9^μ is preferred
- In two operator fits there is a 2σ tension for $\delta C_9^e = \delta C_9^\mu$
- In four operator fits, possible to have $\delta C_9^e = \delta C_9^{\mu}$ but lepton flavour non-universality would take place in C_9' or $C_{10}^{(\prime)}$
- The fit results do not depend very much on whether one uses soft or full form factor approach
- Factorisable power corrections have small effects at observable level
- The cross check with other not-yet-measured ratios (e.g. R_{K^*}) and the inclusive measurements would be of importance

Backup

Nazila Mahmoudi

Rare B Decays - Barcelona - 19 April 2016

At Belle-II, for inclusive $b \rightarrow s\ell\ell$:

expected uncertainty of 2.9% (4.1%) for the branching fraction in the low- (high-) q^2 region, absolute uncertainty of 0.050 in the low- q^2 bin 1 (1 < q^2 < 3.5 GeV²), 0.054 in the low- q^2 bin 2

 $(3.5 < q^2 < 6 \ {
m GeV}^2)$ for the normalised A_{FB}

T. Hurth, FM, JHEP 1404 (2014) 097

T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

Predictions based on our model-independent analysis

black cross: future measurements at Belle-II assuming the best fit solution red cross: SM predictions

 \rightarrow inclusive mode will lead to very strong constraints

	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$	68% C.L.	95% C.L.
$\delta C_9/C_9^{\rm SM}$	-0.18	123.8	3.0 σ	[-0.25, -0.09]	[-0.30, -0.03]
$\delta C_9'/C_9^{ m SM}$	+0.03	131.9	1.0σ	[-0.05, +0.12]	[-0.11, +0.18]
$\delta C_{10}/C_{10}^{\mathrm{SM}}$	-0.12	129.2	1.9σ	[-0.23, -0.02]	[-0.31, +0.04]
$\delta C_9^\mu / C_9^{ m SM}$	-0.21	115.5	4.2σ	[-0.27, -0.13]	[-0.32, -0.08]
$\delta C_9^e/C_9^{\rm SM}$	+0.25	124.3	2.9σ	[+0.11, +0.36]	[+0.03, +0.46]

Nazila Mahmoudi

Observable	95% C.L. prediction
$\overline{\mathrm{BR}(B \to X_s \mu^+ \mu^-)/\mathrm{BR}(B \to X_s e^+ e^-)_{q^2 \in [1, 6](\mathrm{GeV})^2}}$	[0.61, 0.93]
${ m BR}(B ightarrow X_s \mu^+ \mu^-) / { m BR}(B ightarrow X_s e^+ e^-)_{q^2 > 14.2 ({ m GeV})^2}$	[0.68, 1.13]
$\mathrm{BR}(B^{\boldsymbol{0}} \to {\mathcal{K}^*}^{\boldsymbol{0}} \mu^+ \mu^-) / \ \mathrm{BR}(B^{\boldsymbol{0}} \to {\mathcal{K}^*}^{\boldsymbol{0}} e^+ e^-)_{q^{\boldsymbol{2}} \in [1, 6](\mathrm{GeV})^{\boldsymbol{2}}}$	[0.65, 0.96]
$\langle F_L(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} \mu^+ \mu^-) \rangle / \langle F_L(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} e^+ e^-) \rangle_{q^{\boldsymbol{2}} \in [1, 6](\mathrm{GeV})^{\boldsymbol{2}}}$	[0.85, 0.96]
$\langle A_{F\!B}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} \mu^+ \mu^-) \rangle / \langle A_{F\!B}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} e^+ e^-) \rangle_{q^{\boldsymbol{2}} \in [\boldsymbol{4},\boldsymbol{6}](\mathrm{GeV})^{\boldsymbol{2}}}$	[-0.21, 0.71]
$\langle S_{5}(B^{0} \to \mathcal{K}^{*0} \mu^+ \mu^-) \rangle / \langle S_{5}(B^{0} \to \mathcal{K}^{*0} e^+ e^-) \rangle_{q^{2} \in [4, 6](\mathrm{GeV})^{2}}$	[0.53, 0.92]
$\mathrm{BR}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} \mu^+ \mu^-) / \ \mathrm{BR}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} e^+ e^-)_{q^{\boldsymbol{2}} \in [15, 19](\mathrm{GeV})^{\boldsymbol{2}}}$	[0.58, 0.95]
$\langle F_L(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} \mu^+ \mu^-) \rangle / \langle F_L(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} e^+ e^-) \rangle_{q^{\boldsymbol{2}} \in [15, 19](\mathrm{GeV})^{\boldsymbol{2}}}$	[0.998, 0.999]
$\langle A_{\mathit{FB}}(B^{0} \to K^{*0}\mu^+\mu^-) \rangle / \langle A_{\mathit{FB}}(B^{0} \to K^{*0}e^+e^-) \rangle_{q^2 \in [15, 19](\mathrm{GeV})^2}$	[0.87, 1.01]
$\langle S_{5}(B^{0} \to K^{*0} \mu^{+} \mu^{-}) \rangle / \langle S_{5}(B^{0} \to K^{*0} e^{+} e^{-}) \rangle_{q^{2} \in [15, 19](\mathrm{GeV})^{2}}$	[0.87, 1.01]
$\mathrm{BR}(B^+ \to K^+ \mu^+ \mu^-) / \ \mathrm{BR}(B^+ \to K^+ e^+ e^-)_{q^2 \in [1, 6](\mathrm{GeV})^2}$	[0.58, 0.95]
$\mathrm{BR}(B^+ \to K^+ \mu^+ \mu^-) / \ \mathrm{BR}(B^+ \to K^+ e^+ e^-)_{q^2 \in [15, 22](\mathrm{GeV})^2}$	[0.58, 0.95]

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

