Neutrinos Theory and Phenomenology

Joachim Kopp EPS Conference on High Energy Physics | Venice, Italy | July 11th, 2017

Apologies for not being here in person

The reason are these little fellows, born yesterday

2

In this Talk

- Phenomenoloy for Long Baseline Experiments
- Oscillation Anomalies and Sterile Neutrinos
- **Meutrinos and Dark Matter**
- Neutrinoless Double Beta Decay
- Understanding Neutrino Mass and Mixing

- Astrophysical Neutrinos

 talk by Maarten de Jong
- Supernova Neutrinos
 talk by Maarten de Jong
- Meutrino Cosmology
 - → talks by François Bouchet, Antonio Riotto
- Neutrinos as a probe for Dark Matter
 talks by Yonit Hochberg, Maarten de Jong

Phenomenology for Long Baseline Experiments

LHC

- Matrix Elements
 - o NⁿLO calculation
 - **o** MC simulations (Pythia, ...)
- Model Building
- 🗹 Global Fits

Neutrinos

- Beam FluxesCross Sections
- Oscillation Physics (SM + beyond)
 - **o** Simulations (GENIE, GLoBES, ...)
- Model Building
- Global Fits

LHC

- Matrix Elements
 - o NⁿLO calculation
 - **o** MC simulations (Pythia, ...)
- Model Building
- 🗹 Global Fits

Neutrinos

- Beam FluxesCross Sections
- Oscillation Physics (SM + beyond)
 - **o** Simulations (GENIE, GLoBES, ...)
- Model Building
- Global Fits

Optimization of Future Experiments

- **o** What are the most important physics goals?
- SM precision measurements ↔ BSM searches
- **o** Boundary conditions (available sites, budget, politics, ...)

Mow could BSM physics affect precision measurements?

Long Baseline Phenomenology

- **M** Fits to oscillation data fraught with correlations and degeneracies
- Can often be resolved in global fits

NuFit 3.0 (Esteban Gonzalez-Garcia Maltoni Martinez Schwetz), 2016

8

Global Fits

Global Fits

Fits to oscillation data fraught with correlations and degeneracies

Can often be resolved in global fits

NuFit 3.0 (Esteban Gonzalez-Garcia Maltoni Martinez Schwetz), 2016

Fits to oscillation data fraught with correlations and degeneracies

Can often be resolved in global fits

★ O(few %) precision
 ★ no sensitivity to mass ordering, δ_{CP}, octant of θ₂₃
 ★ ... yet!
 ★ First hints will probably emerge from global fits

NuFit 3.0 (Esteban Gonzalez-Garcia Maltoni Martinez Schwetz), 2016

Oscillation Anomalies

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Anomalies in Short Baseline Oscillations

\mathbf{V} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

 \mathbf{V} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

 $\mathbf{V} \sqcup \mathbf{LSND} / \mathbf{MiniBooNE}$: anomalous $\nu_{\mu} \to \nu_{e}$ oscillations

 \mathbf{M} Reactor & Gallium Experiments: anomalous ν_e disappearance

 \mathbf{V} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

 \mathbf{V} Reactor & Gallium Experiments: anomalous ν_e disappearance

"I felt a great disturbance in the force."

....

 \checkmark Promote mixing matrix to 4×4

Solution channels are related:

$$\begin{aligned} P_{\nu_e \to \nu_e} \simeq 1 - 2|U_{e4}|^2 (1 - |U_{e4}|^2) \\ P_{\nu_\mu \to \nu_\mu} \simeq 1 - 2|U_{\mu4}|^2 (1 - |U_{\mu4}|^2) \\ P_{\nu_\mu \to \nu_e} \simeq 2|U_{e4}|^2 |U_{\mu4}|^2 \end{aligned}$$
(for $4\pi E/\Delta m_{41}^2 \ll L \ll 4\pi E/\Delta m_{31}^2$)

Models can be over-constrained.

Global Fit in 3+1 Model

Dentler Hernandez JK Machado Maltoni Martinez Schwetz, in preparation see also works by Collin Argüelles Conrad Shaevitz, <u>1607.00011</u>, Gariazzo Giunti Laveder Li, <u>1703.00860</u>

Global Fit in 3+1 Model

Dentler Hernandez JK Machado Maltoni Martinez Schwetz, in preparation see also works by Collin Argüelles Conrad Shaevitz, 1607.00011, Gariazzo Giunti Laveder Li, 1703.00860

severe tension ($p < 10^{-4}$)

 \star scrutinize anomalies for unknown systematics (need 4 independent effects!)

 \star scrutinize also null results.

Dentler Hernandez JK Machado Maltoni Martinez Schwetz, in preparation see also works by Collin Argüelles Conrad Shaevitz, 1607.00011, Gariazzo Giunti Laveder Li, 1703.00860

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v

- Entropy production at T < MeV</p>
 - ν_s diluted Fuller Kishimoto Kusenko, <u>1110.6479</u>; Ho Scherrer, <u>1212.1689</u>

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v

- Entropy production at T < MeV</p>
 - ν_s diluted Fuller Kishimoto Kusenko, <u>1110.6479</u>; Ho Scherrer, <u>1212.1689</u>
- \checkmark New interactions in the ν_s sector
 - o production suppressed by thermal potential

Hannestad et al. <u>1310.5926</u>; Dasgupta JK, <u>1310.6337</u>

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v

- Entropy production at T < MeV</p>
 - ν_s diluted Fuller Kishimoto Kusenko, <u>1110.6479</u>; Ho Scherrer, <u>1212.1689</u>
- \checkmark New interactions in the ν_s sector
 - o production suppressed by thermal potential

Hannestad et al. <u>1310.5926;</u> Dasgupta JK, <u>1310.6337</u>

 \mathbf{V}_s properties change in late phase transition

Bezrukov Chudaykin Gorbunov, <u>1705.02184</u>

Flux Measurement by Daya Bay

Reactor fuel composition evolves with time ("burnup")

Reactor fuel composition evolves with time ("burnup")

Measure inverse β decay rate per isotope

 \checkmark

Reactor fuel composition evolves with time ("burnup") Measure inverse β decay rate *per isotope*

Reactor fuel composition evolves with time ("burnup")
Measure inverse β decay rate *per isotope*

Reactor fuel composition evolves with time ("burnup")
Measure inverse β decay rate *per isotope*

- Reactor fuel composition evolves with time ("burnup")
- Measure inverse β decay rate per isotope
- **Markov Full analysis:**
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

$$\Delta \chi^2 = 7.9$$

Flux Measurement by Daya Bay

- Reactor fuel composition evolves with time ("burnup")
 - **Measure inverse** β decay rate *per isotope*
- 🗹 Full analysis:
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

 $\Delta \chi^2 = 6.7$ (with H-M uncertainties)

- Reactor fuel composition evolves with time ("burnup")
 - Measure inverse β decay rate per isotope
- **Markov Full analysis:**
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

 $\Delta \chi^2 = 6.7$ (with H-M uncertainties)

Interpretation difficult

- Number of degrees of freedom?
- o Include uncertainties in fixed fluxes?

- Reactor fuel composition evolves with time ("burnup")
 - Measure inverse β decay rate per isotope
- **M** Full analysis:
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

 $\Delta \chi^2 = 6.7$ (with H-M uncertainties)

Interpretation difficult

- Number of degrees of freedom?
- o Include uncertainties in fixed fluxes?

Fluxes within errors + $\sin^2 2\theta_{14}$, Δm_{41}^2 : p = 0.18 Fluxes free : p = 0.73 $\Delta \chi^2$ (sterile neutrino vs. free fluxes) : p = 0.006

Neutrinos and Dark Matter

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Leading candidate for Warm Dark Matter

- Improved small scale structure
- o x-ray line signature
- Production through oscillations challenged by e.g. Lyman-α data
- Promising alternative production mechanisms
 - o Decays of heavy particles
 - o High-T freeze-in

DM Annihilation in the Sun

DM Annihilation in the Sun

Coherent forward scattering of neutrinos on DM

- o analogous to SM matter effects ("MSW effect")
- **o** Requires huge DM number density
- Fuzzy Dark Matter
 - **o** scalar or vector, $m < 10^{-20} \, \mathrm{eV}$
 - o Compton wave length $\sim \mathrm{pc}$
 - o Interesting for small scale structure

Krnjaic Machado Necib, <u>1705.06740</u> Brdar JK Liu Prass Wang, <u>1705.09455</u>

Neutrino – DM Interactions

o an Limits from Long-Baseline Experiments Re

0

"You underestimate the power of the dark side."

Matrix Elements for Neutrinoless Double Beta Decay

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

 $\Gamma \propto G_F^4 |\mathcal{M}|^2 \left| \sum U_{ej}^2 m_j \right|^2 p_e^2$

 $\Gamma \propto G_F^4 |\mathcal{M}|^2 \left| \sum U_{ej}^2 m_j \right|^2 p_e^2$

 $\Gamma \propto G_F^4 |\mathcal{M}|^2 \left| \sum U_{ej}^2 m_j \right|^2 p_e^2$

Nuclear Matrix Elements cannot be measured independently Nuclear Shell Model

- o good for small nuclei
- o fails for heavy nuclei, does not capture multiparticle excitation
- Quasiparticle Random Phase Approximation (QRPA)
 - **o** quasiparticle state = linear combination of single nucleon states
 - o large set of states
 - o but less accurate description of nucleon nucleon correlations
- \mathbf{V} Currently $\mathcal{O}(1)$ uncertainties

of Future:

- o Improvements to Shell Model, QRPA
- **ο** Ab Initio method (e.g. in χPT)

Engel Menéndez, <u>1610.06548</u>

Nuclear Theory for 0v2β Decay

Understanding Neutrino Mass and Mixing

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Seesaw Models

Right-handed singlet: (type-l seesaw)

Scalar triplet: (type-II seesaw)

Fermion triplet: (type-III seesaw)

$$m_{\nu} = Y_{\Sigma}^T \frac{1}{M_{\Sigma}} Y_{\Sigma} v^2$$

Minkowski; Gellman, Ramon, Slansky; Yanagida; Glashow; Mohapatra, Senjanovic

 $m_{\nu} = Y_N^T \frac{1}{M_N} Y_N v^2$

Magg, Wetterich; Lazarides, Shafi; Mohapatra, Senjanovic; Schechter, Valle

Foot, Lew, He, Joshi; Ma; Ma, Roy; T.H., Lin, Notari, Papucci, Strumia; Bajc, Nemevsek, Senjanovic; Dorsner, Fileviez-Perez;....

slide by Thomas Hambye

- Generic seesaw scale (10¹⁴ GeV) out of reach
- Opportunities in low-scale seesaw, LR symmetry, B-L models.

28

- Generic seesaw scale (10¹⁴ GeV) out of reach
- Opportunities in low-scale seesaw, LR symmetry, B-L models.

- Generic seesaw scale (10¹⁴ GeV) out of reach
- Opportunities in low-scale seesaw, LR symmetry, B-L models.

28

Radiative Neutrino Mass Models

diagrams from Sugiyama, <u>1505.01738</u>

29

Radiative Neutrino Mass Models

diagrams from Sugiyama, 1505.01738

Radiative Neutrino Mass Models

Mased on symmetries

- o continuous ↔ discrete
- o Abelian ↔ non-Abelian
- o with/without CP symmetry
- Can reproduce observed masses / mixing angles
- Predictive power in specific models

Hagedorn, <u>1705.00684</u>

Summary

Summary

- More that the second second
- Meed to get to the bottom of oscillation anomalies
- **Mathematical Content of Series and DM physics closely intertwined**
- Ov2β decay needs accurate matrix elements
- **Meutrino mass & flavor models need experimental input**

"Always in motion is the future"

Thank you!

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

