Direct Searches for Dark Matter

Manfred Lindner

A long List of Evidences...

- + Galactic rotation curves
- + Galaxy clusters & GR lensing
- + Bullet Cluster
- + Velocity dispersions of galaxies
- + Cosmic microwave background
- + Sky Surveys and Baryon Acoustic Oscillations
- + Type la supernovae distance measurements
- + Big Bang Nucleosynthesis (BBN)
- + Lyman-alpha forest
- + Structure formation

- Strong indirect evidence for a large dark sector
- → dynamic, static, radiation, …
- cannot be explained by ordinary matter

Baryon-to-photon ratio $\eta \times 10^{10}$

ШB

^{+ ...}

Dark Matter Directions

Gravity

Matter = new Particles

MOND simple one

scale modification → fails badly

Other GR

Other GR modifications

or

a suitable population (mass, number) of black holes

- BSM motivated (SM problems)
- ν's: 0,7% DM
- axions
- sterile v's
- many other particles

- Abundance or model motivated
- various
 candidates

WIMPs combine both aspects in an attractive way + WIMP miracle

The WIMP Miracle

inflation → many e-folds

Reheating → all particle types produced

Evolution of original plasma by:

- expansion (dilution)
- decays
- interactions \rightarrow conversion processes

Evolution of original DM density:

➔ Boltzmann equation

$$rac{dn_{\chi}}{dt} + 3H(T)n_{\chi} = -\langle \sigma v
angle (n_{\chi}^2 - n_{\chi,eq}^2)$$

➔ thermal freeze-out

BSM motivated new physics @TeV:
→ automatically ~ correct abundance
→ typical WIMP mass O(EW scale)

Generic WIMP Cross Section

- Quantum mechanics: wavelength $\lambda \sim 1/mass$
- () "size/area" of a particle: $\pi \lambda^2 = \pi/m^2$
- scattering crossection = area times coupling strength
- $\sigma \sim O(0.001-1.0)^2 g_2^2 \pi/m^2$ or tuning, symmetry, ...

model	weak	area
parameters	coupling	

or tuning, symmetry, ... ←→ abundance

→ the natural / expected range for a 50GeV WIMP: σ ~ 10⁻⁴² - 10⁻⁴⁸ cm²

known amount of DM \rightarrow ~WIMP flux \rightarrow event rate

We know size/sensitivity of a detector which can cover the most interesting natural WIMP space

A specific Example: MSSM neutralino

• Level of fine-tuning $\rightarrow \Delta_{tot}$

$$\Delta p_i \equiv \left| rac{p_i}{M_Z^2} rac{\partial M_Z^2(p_i)}{\partial p_i}
ight| = \left| rac{\partial \ln M_Z^2(p_i)}{\partial \ln p_i}
ight| \qquad \Delta_{
m tot} \equiv \sqrt{\sum_{p_i=1}^{p_i}} p_i$$

$$\Delta_{\text{tot}} \equiv \sqrt{\sum_{p_i = \mu^2, b, m_{H_u}^2, m_{H_d}^2} \{\Delta p_i\}^2}$$

Grothaus, ML, Takanishi: full MSSM, not cMSSM, pMSSM, NMSSM...

Hunting WIMPS in different Ways

SM

Standard Model particles interact with WIMPs: assumptions...

SM

indirect detection

FERMI, PAMELA, AMS, HESS, IceCube, ... astro. uncertainties... → DM signal w/o doubt?

Example: keV lines and charge exchange reactions ²

colliders

may detect new particles, DM? (lifetime, abundance)

So far nothing seen...

- \rightarrow impact on theory...
- \rightarrow SUSY \rightarrow higher scale
- \rightarrow new ideas/candidates

M. Lindner MPIK

Hunting WIMPS in different Ways

SM

DM

Standard Model particles interact with WIMPs: assumptions...

SM

ĎМ

indirect detection

FERMI, PAMELA, AMS, HESS, IceCube, ... astro. uncertainties... → DM signal w/o doubt?

Example: keV lines and charge exchange reactions

M. Lindner MPIK

Normal v's are ~ 0.7% of DM
Black holes are DM
Questions:

one dominant component?
a cocktail?
is a suitable particle enough?
direct detection of DM to see what the universe is made of!

direct detection

colliders

may detect new particles, DM? (lifetime, abundance)

ar nothing seen... impact on theory... SUSY → higher scale new ideas/candidates

Direct Detection Techniques

• Detection of DM = see what the Universe is made of

Converting WIMP Scattering into Signals

Light – ionization – heat: 3 examples

- semiconductor Crystals (Ge)
 → pulses
- in crystals (e.g. CaWO₄) → heat +light signal
- liquid noble gases
 → light and ionization@TPC

EPS-HEP, Venice, 5-12 July 2017

WIMP Event Rates

Powerful Devices: Dual-Phase TPCs

WIMP-scattering:

1) direct light singal \rightarrow S1 2) drift of electrons to gas phase 3) 2^{nd} light signal \rightarrow S2

- Drift-time $\rightarrow z$
- PMT-signal distribution \rightarrow x,y
- Puls hight, shape, ...
- → excellent 3D position reconstruction $\Delta r < 3 \text{ mm}; \Delta z < 0.3 \text{ mm}$
- → fiducialization = exclude known backgrounds from 'dirty' surfaces

PMT Array

WIMP

ਰ Rate [events kg⁻¹ day⁻¹

10-2

proportional

The XENON-Program @ LNGS

	XENON10	XENON100	XENON1T	XENONnT
Period	2005-2007	2008-2016	2012-2018	2019-2023
Mass	25 kg	161 kg	3200 kg	~8000 kg
Drift	15 cm	30 cm	100 cm	144 cm
Status	Completed (2007)	Completed (2016)	Running	Construction
σ _{SI} Limit (@50 GeV/c ²)	$8.8 \times 10^{-44} \text{ cm}^2$	$1.1 \times 10^{-45} \text{ cm}^2$	$1.6 \times 10^{-47} \text{ cm}^2$ (2018)	$1.6 \times 10^{-48} \text{ cm}^2(2023)$

Scaling Considerations

larger WIMP mass:

- higher momentum transfer → lowest threshold less critical
- smaller WIMP flux & reduced cross-section → larger detector

smaller WIMP mass:

- lowest possible threshold
- higher WIMP flux helps

Improving sensitivity

bigger detectors
 - increased technical challenges

-

- more background suppression
 - UG lab, better $\mu\text{-veto},$ n-shielding
 - extremely radio-pure materials
 - Kr reduction
 - Rn emanation
 - outgassing

- ···

Ultra Low Background Requirements

underground laboratory = shielding from cosmic rays

- remaining µ-flux

- neutrons from rock

 \rightarrow shields of PE, lead copper

- Radon (²²²Rn is an α -decaying isotope)
 - \rightarrow from UG air: purging with clean nitrogen
 - \rightarrow emanation: screening of detector materials
- unstable isotopes in detector material (U, Th, K, Tl, ...)
 - \rightarrow " γ screening" of construction material
- online cleaning: E.g. Xenon gas (both radiopurity and e-lifetime)

 \rightarrow distillation

→ extreme precise instruments for the measurements of Rn, Kr, ... (ppq)

Material γ-Screening Facilities

- Different screening stations@MPIK underground lab (1mBq/kg)
- GEMPIs
 @LNGS (10µBq/kg)
- GIOVE
 @MPIK (50µBq/kg)

An Example: PMTs for XENON1T

¹³⁷Cs

XENON1T:

248, 3" Hamamatsu R11410-21

development & optimization together with Hamamatsu

Material selection & screening < 1mBq/PMT in U/Th

Electronic recoil BG from materials arXiv:1512.07501, JCAP04(2016)027

Extensive testing at room temperature and cryogen high QE: 35% @ 175nm stability, tightness, ... 30% single PE resolution

80

70

60

40

50

Relative contribution [%]

90

100

1) Quartz: faceplate (PMT window)

Aluminum: sealing

3) Kovar: Co-free body 4) Stainless steel: electrode disk

5) Stainless steel: dynodes

7) Quartz: L-shaped insulation

10) Kovar: flange of ceramic stem

8) Kovar: flange of faceplate

6) Stainless steel: shield

Ceramic: stem

11) Getter

Rn Screening Facilities

Based on MPIK gas counting systems @LNGS and @MPIK

- sensitivity = few atoms/probe

²²²Rn emanation measurments

- samples \rightarrow collect emanated gas
- non-trivial; not commonly available; routine @MPIK
- established numbers:

Nylon (Borexino) < 1μBq/m² Copper (Gerda): 2μBq/m² stainless steel (Borexino): 5μBq/m² Titanium: (100 ± 30) μBq/m²

- Auto-Ema: new automated Rn screening facility at MPIK

 many samples
- GeRn data base: more than 2800 samples

Krypton Analysis

⁸⁵Kr in Xenon: β-decays...

- must control of Kr level

MPIK RGMS (Rare Gas Mass Spectroscopy)

- measure ^{nat}Kr to ppt level
- extrapolation to ⁸⁵Kr abundance
- ppq sensitivity achieved

Active Kr and Rn Removal

cryogenic distillation:

- established technique
- XENON100: (19 ± 1) ppt

design parameters for XENON1T

- thru-put 3kg/hr
- separation power 10⁵
- final Kr/Xe < 1ppt achieved

Rn distillation...

M. Lindner MPIK

EPS-HEP, Venice, 5-12 July 2017

85 Kr

4.5 m

WIMP Results

The DAMA/LIBRA annual Modulation

DAMA/LIBRA 1.33 t*year exposure of Nal crystals (13 annual cycles) 100° 2-6 keV 50 0.06 Residuals (cpd/kg/keV) DAMA/LIBRA \approx 250 kg (1.04 ton×yr) 0.04 0.02 0 -0.02 -0.04-0.064000 4500 5000 3500 5500

9.2σ signal for modulation
 frequency and phase

 frequency and phase match DM expectation

Various periodic backgrounds (atmosphere $\leftarrow \rightarrow \mu$ flux, water levels $\leftarrow \rightarrow n$, Rn, ...)

Problem:

- Backgrounds: So far no accepted explanation
- Signal: Other detectors (direct detection, indirect detection, LHC) do not see the corresponding overall signal which matches to the modulation

Proposed solution: DM particles which scatter on electrons (leptophilic DM...)
→ would be seen by DAMA/LIBRA, but not by others

Modulation of Electronic Recoils in XENON100

477 life days (48kg*year); improved signal & bckg. modelling

Future: New NaI Projects to directly check DAMA → clarify modulation → new projects: SABRE, COSINUS, COSINE-100, ANAIS, KIMS-NaI, DM-Ice

M. Lindner MPIK

Spin Independet (SI) limits for low MWIMP

SuperCDMS: Ge, Si EDELWEISS-III (Ge) phonons (heat) + ionization

SuperCDMS @SNOLAB

Aim: 50 kg-scale (cryostat up to 400kg) low threshold, less bg: deeper, cleaner, upgraded electronics, data taking 2020+

EDELWEISS @LSM

2016: 20 kg Ge array 2017: 350 kgd in HV mode optimize 1-10 GeV sensitivity

→ EDELWEISS-III

CRESST (CaWO₄) heat + light CRESST @LNGS

2013-2015, 52 kg × d now: best threshold 300 eV_{nr} excellent for small WIMP mass

→ CRESST-III

SD Limits for Neutron and Proton

M. Lindner MPIK

EPS-HEP, Venice, 5-12 July 2017

SI Limits for High M_{WIMP}

Limits until recently:

- XENON100 (until 2016)
- PandaX-II
- LUX

→ cuts into generic SUSY parameter space!

New: XENON1T

→ Goal: two orders of magnitude improvement in sensitivity with respect to XENON100 → commissioning in 2016 → data taking

M. Lindner MPIK

EPS-HEP, Venice, 5-12 July 2017

XENON1T Operation

- Lowest background level of all LXe experiments
- Krypton background reduced by cryogenic distillation XENON1T, arXiv:1612.04284
- Krypton level measured independently by RGMS

Eur. Phys. J. C 74 (2014) 2746

Rn budget well understood

Science Run: Exposure

magnitude 5.6 earthquake ~20 km away

XENON1T 1st SI Limits for High MWIMP

- ER and NR shape largely determined from calibration fits
- Unbinned profile likelihood analysis
- Uncertainties from background components included

- Strongest SI limit 1705.06655: 7.7 x 10⁴⁷ cm² @ 35 GeV/c²
- data taking continues: SR1
 by now > 90 more days of data
 keep running expect more in 2017!

Expected soon: DEAP-3600 @ SNOLAB

- Single phase LAr TPC, 3.6t (1t fiducial)
- Spherical ultra pure acrylic vessel
- 255 PMTs, extra shielding (foam, PE)
- TPB wavelength shifter
 128nm scintillation light into visible light
- Water tank + veto PMTs
- Physics run → 1st results very soon

Liquid Argon Projects

Other targets are important: different backgrounds, physics, consistency Liquid Argon: Excellent target – avoid ³⁹Ar by production from oil/gas wells

Running:

- DEAP-3600: see previous slides
- DarkSide-50:
- ArDM
- Mini-CLEAN

Plans: DarkSide-20k 20 t fiducial aiming at 100 t*yr → 10⁻⁴⁷ cm² at 1 TeV/c²

Next: Argo → 1kton*yr exposure

M. Lindner MPIK

PandaX-4T at CJPL

- Drift region: Φ ~1.2m, H~1.2m
 - Xenon in sensitive region ~4ton
- Design goal:
 - High signal efficiency
 - Large and uniform electric field
 - Veto ability

- 2017-2018: Produce all components and test
- 2019-2020:On-site assembling and commissioning lacksquare
- 2021-2022:Data-taking •
- eventual goal: ~30 t at CJPL to reach neutrino floor sensitivity

Top PMT array, 3"

LUX-ZEPLIN (LZ)

Already existing/operational:

- Muon Veto
- Cryostat Support
- Outer Cryostat
- in-LXe Cabling
- LXe storage system
- Cryogenic system
- Purification system
- Kr removal
- DAQ
- 95% of Electronics
- Calibration System
- 260 PMTs
- >8t of LXe (was 4.5t one year ago!)
- Screening facilities
- dedicated nT funding

Already started:

- 230 new PMTs ordered
- TPC/Cryostat design
- first material orders
- Screening campaign
- Neutron veto studies
- 2nd storage vessel ordered
- Rn reduction system design
- purification improvements
- etc.

Direct WIMP Search Timeline (Xe)

Systematically lowering the x-section (symmetry, tuning,...)? $\leftarrow \rightarrow$ WIMP miracle?

DARWIN: The ultimate WIMP Detector

Summary

- There is clear evidence for DM in the Universe Direct detection of Dark Matter is the crucial test to prove that the Universe is full of new particles
- Different options/candidates:
- → WIMPs seem best motivated
- Excellent opportunity to find or exclude WIMPs in the next years in the natural parameter space
- → Axions, sterile neutrinos and ... other candidates
- → Interplay of indirect & direct detection & LHC
- → Exciting perspectives for the next few years!