

Highlights from the ALICE experiment and why this is not (only) a heavy-ion talk

Michele Floris (CERN) EPS-HEP, Venice July 12, 2017

Heavy-Ion Physics "Standard Model"

QCD predicts deconfined medium at high temperature, the Quark-Gluon Plasma ($T_c \approx 155$ MeV) Heavy lons: study the QCD phase diagram in the laboratory, create and characterize the QGP

Basic idea:

- Collision of Pb-Pb nuclei creates the conditions for the phase transition
- The system gets close to thermal equilibrium and expands collectively
- Expansion \Rightarrow cool-down: transition to hadrons

Current research

- Precise measurement of macroscopic properties
- Understanding microscopic fabric of QGP

Heavy-Ion Physics "Standard Model"

QCD predicts deconfined medium at high temperature, the Quark-Gluon Plasma ($T_c \approx 155$ MeV) Heavy lons: study the QCD phase diagram in the laboratory, create and characterize the QGP

Basic idea:

- Collision of Pb-Pb nuclei creates the conditions for the phase transition
- The system gets close to thermal equilibrium and expands collectively
- Expansion \Rightarrow cool-down: transition to hadrons

Current research

- Precise measurement of macroscopic properties
- Understanding microscopic fabric of QGP

Supported by 3 decades of measurements and theoretical research! [J. Stachel, today] **New challenges** and **opportunities** from recent results in pp and p-Pb

Pb-Pb Collisions ($\sqrt{s_{NN}} = 2.76, 5 \text{ TeV}$) • Core business: create and characterize the QGP

pp Collisions ($\sqrt{s} = 0.9 - 13$ TeV) Reference data

p-Pb Collisions ($\sqrt{s_{NN}} = 5$, 8 TeV)

• Control experiment • "Cold nuclear matter" effects (e.g. modifications to PDF) ALICE Highlights – EPS-HEP 2017

Pb-Pb Collisions ($\sqrt{s_{NN}} = 2.76, 5 \text{ TeV}$) • Core business: create and characterize the QGP

- Centrality

pp Collisions ($\sqrt{s} = 0.9 - 13$ TeV) Reference data

ALICE Highlights – EPS-HEP 2017

before collision

after collision

p-Pb Collisions ($\sqrt{s_{NN}} = 5, 8 \text{ TeV}$)

• Control experiment • "Cold nuclear matter" effects (e.g. modifications to PDF)

Towards a paradigm shift!

Striking **similarities** between pp/p–Pb/Pb–Pb Phenomena considered hallmarks of heavy-ions seen in smaller systems

(discovered in high multiplicity events, seem to be relevant also for minimum-bias events)

\Rightarrow Important consequences for the interpretation of all hadronic collisions!

p-Pb Collisions ($\sqrt{s_{NN}} = 5$, 8 TeV)

ALICE Highlights – EPS-HEP 2017

Control experiment • "Cold nuclear matter" effects (e.g. modifications to PDF)

e QGP

Towards a paradigm shift!

Striking **similarities** between pp/p–Pb/Pb–Pb Phenomena considered hallmarks of heavy-ions seen in smaller systems

(discovered in high multiplicity events, seem to be relevant also for minimum-bias events)

\Rightarrow Important consequences for the interpretation of all hadronic collisions!

This is a talk about **multiparticle production** in hadronic collisions and emergent properties of QCD

(e.g. modifications to PDF)

ALICE Highlights – EPS-HEP 2017

e QGP

Hadronization, particle spectra and abundances

Strangeness Enhancement

- Strangeness enhancement considered defining feature of heavy-ions
 - Now also seen in high-multiplicity pp / p–Pb!
- Not reproduced by traditional soft QCD models (e.g. Pythia)
 - Challenges universality and factorization of fragmentation Fischer, Sjostrand, JHEP01(2017)140
 - Study of hadronization mechanisms
- Multiple Parton Interactions lead to densely packed strings in the transverse plane (e.g. EPOS and DIPSY)

Nature Phys. 13 (2017) 535-539

• Smooth evolution of particle ratios with multiplicity

New results on strange particle production in **Pb–Pb collisions at** $\sqrt{s_{NN}} = 5.02$ TeV

In Pb–Pb, hadrons produced in apparent (near) thermal and chemical equilibrium: $dN/dy(m) \simeq e^{-m/T}$ (+ conservation laws, feed down, degeneracy) **Same language** used successfully in some **pp models** (e.g. EPOS) Shed light on dynamic origin of equilibrium? Will pp ratios converge to Pb-Pb values?

[P. Kalinak, 6/7 16:45]

Heavy Flavor vs Multiplicity

J/ψ increase with multiplicity: multiple (semi-hard) parton interaction (MPI)! $dN_{ch}/d\eta$ $\overline{\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
angle}$

Similar for *D* / J/ψ :

not affected by hadronization?

Soft/Hard interplay: evolution of the "dense" string core vs multiplicity / MPIs

[J. Crkovska, 6/7 10:30]

Heavy Flavor vs Multiplicity

J/ψ increase with multiplicity: multiple (semi-hard) parton interaction (MPI)!

Similar for *D* / J/ψ : not affected by hadronization?

Soft/Hard interplay: evolution of the "dense" string core vs multiplicity / MPIs

[J. Crkovska, 6/7 10:30]

Charmed baryons in pp/p-Pb

First cross section measurement of Ξ_c^0 in pp and Λ_c^+ in p-Pb (and mid-y pp) at LHC

Ratio of charm baryons to D mesons not reproduced in event generators Important constraints on charm hadronization and nuclear effects!

[[]A. De Caro, 6/7 11:45] [C. Terrevoli, 6/7 15:45]

Nuclei Measurements

Heavy lon collisions are also an excellent (hyper-)nuclei factory Production mechanism of compound objects: coalescence vs thermal production

ALI-PREL-130492

Increase of d/p vs dN/dŋ (weakly bound object) Hint of non-monotonic trend

Nuclei Measurements

Heavy lon collisions are also an excellent (hyper-)nuclei factory **Production mechanism** of compound objects: coalescence vs thermal production

ALI-PREL-130492

Increase of d/p vs dN/dŋ (weakly bound object) Hint of non-monotonic trend

ALI-PREL-130195

One of the most precise measurement of ³/_A **H lifetime**!

[S. Trogolo, 6/7 17:30]

Collective Expansion

Identified Particle Spectra

Thermalization \Rightarrow **pressure** drives the expansion Cornerstone in the interpretation of Heavy–Ion data Particles move in a common velocity field Momentum distribution "blue-shifted" + mass ordering

Identified Particle Spectra

Thermalization \Rightarrow **pressure** drives the expansion Cornerstone in the interpretation of Heavy–Ion data Particles move in a common velocity field Momentum distribution "blue-shifted" + mass ordering

Identified Particle Spectra

Thermalization ⇒ pressure drives the expansion Cornerstone in the interpretation of Heavy–Ion data Particles move in a common velocity field Momentum distribution "blue-shifted" + mass ordering

High precision results from Run 2

Baryon/Meson Ratios

Depletion at low p_T increase at intermediate p_T Similar evolution seen in pp and p-Pb collisions

Low to mid-*p*_T described by **hydrodynamic models**, freezeout from expanding fluid with a common velocity **Idea implemented (successfully!) also for pp and p–Pb**

Baryon/Meson Ratios

ALI-PREL-110279

_ow to mid-p_T described by **hydrodynamic models**. freezeout from expanding fluid with a common velocity Idea implemented (successfully!) also for pp and p-Pb

Depletion at low p_{T} increase at intermediate p_{T} Similar evolution seen in pp and p-Pb collisions

Run 2: identified particles in pp

Measurements of common light-flavor species in minimum bias collisions well advanced Studies as a **function of multiplicity** (MB & HM triggers) in progress Reach to Pb–Pb–like multiplicity [G. Bencedi, 6/7 9:00] ALICE Highlights – EPS-HEP 2017

[M. Nguyen, today]

M. Floris

ALICE Highlights — EPS-HEP 2017

[M. Nguyen, today]

Azimuthal (φ)

[M. Nguyen, today]

Azimuthal (φ)

Anisotropic particle density

 $\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos[\varphi - \Psi_1] + 2v_2 \cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + \dots$

[M. Nguyen, today]

M. Floris

 $\frac{dN}{d\varphi} \propto 1 + \frac{2v_1}{v_1} \cos[\varphi - \Psi_1] + 2v_2$

v^{**n**} are sensitive to the **full evolution** of the collision system Initial conditions \rightarrow QGP phase \rightarrow Hadronization Full industry of methods / measurements, only the basic examples here Sensitive to sub-nucleonic fluctuations (of gluon densities)

(important for precision studies and small systems)

[M. Nguyen, today]

$$\cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + ...$$

 $\frac{dN}{d\varphi} \propto 1 + \frac{2v_1}{v_1} \cos[\varphi - \Psi_1] + 2v_2$

v_n are sensitive to the **full evolution** of the collision system Initial conditions \rightarrow QGP phase \rightarrow Hadronization Full industry of methods / measurements, only the basic examples here Sensitive to sub-nucleonic fluctuations (of gluon densities)

(important for precision studies and small systems)

[M. Nguyen, today]

M. Floris

$$\cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + ...$$

vn of identified particles

vn of identified particles

[See also P. Romatschke, 7/7 9:00]

vn of identified particles

Charm Flow

Significant v_2 of D mesons and J/ψ measured with Run 2 Pb-Pb data! Indicates participation of low p_{T} charm to **collective motion** in the QGP New results also on $D_{\rm S}$ (R. Arnaldi, next talk)

M. Floris

[R. Arnaldi, today] ALICE Highlights – EPS-HEP 2017 [I. Das, 6/7 9:30]

Hard Processes

Jet quenching in Heavy-Ion

[R. Arnaldi, today] [M. Nguyen, today]

High momentum partons lose energy while propagating through the QGP \Rightarrow Jets "quenched" in Pb-Pb collisions

Simplest measurements: **R_{AA}/R_{pPb}**

$$R_{AA} = \frac{AA}{\text{scaled pp}} = \frac{d^2 N_{AA}/dp_{T} dy}{\langle N_{\text{coll}} \rangle d^2 N_{pp}/dp_{T} dy}$$

Energy loss depends on parton type properties of the medium and can modify color flow

> [C. Nattrass, 7/7, 15:00] [A. Shabetai, 6/7 11:30] [X. Zhang, 6/7 15:00]

Jet quenching in Heavy-Ion

ALI-PREL-114186

High momentum partons lose energy while propagating through the QGP \Rightarrow Jets "quenched" in Pb-Pb collisions

Simplest measurements: **R_{AA}/R_{pPb}**

Energy loss depends on **parton type** properties of the medium and can modify color flow

> [C. Nattrass, 7/7, 15:00] [A. Shabetai, 6/7 11:30] [X. Zhang, 6/7 15:00]

[[]R. Arnaldi, today] [M. Nguyen, today]

Jet quenching in Heavy-Ion

[R. Arnaldi, today] [M. Nguyen, today]

High momentum partons lose energy while propagating through the QGP \Rightarrow Jets "quenched" in Pb-Pb collisions

Simplest measurements: **R_{AA}/R_{pPb}**

$$R_{AA} = \frac{AA}{\text{scaled pp}} = \frac{d^2 N_{AA}/dp_{T} dy}{\langle N_{\text{coll}} \rangle d^2 N_{pp}/dp_{T} dy}$$

Energy loss depends on **parton type** properties of the medium and can modify color flow

> [C. Nattrass, 7/7, 15:00] [A. Shabetai, 6/7 11:30] [X. Zhang, 6/7 15:00]

J/ψ RAA in Pb-Pb

Time \rightarrow

QGP screens the $c\bar{c}$ interaction $\Rightarrow J/\psi$ suppressed If many $c\bar{c}$ are created in the collision J/ψ can form via **quark (re)combination** New results at $\sqrt{s_{NN}} = 5.02$ TeV

[B. Paul, 6/7 10:30]

J/ψ RAA in Pb-Pb

Time \rightarrow

QGP screens the $c\bar{c}$ interaction $\Rightarrow J/\psi$ suppressed If many $c\bar{c}$ are created in the collision J/ ψ can form via **quark (re)combination** New results at $\sqrt{s_{NN}} = 5.02$ TeV

[B. Paul, 6/7 10:30]

Mid-y less suppressed than forward-y

Low *p*_T: Smaller suppression (and weak centrality dependence, not shown)

More charm quarks at low p_{T} and mid-rapidity

[B. Paul, 6/7 10:30]

ALICE Highlights – EPS-HEP 2017

Mid-y less suppressed than forward-y

Low pT: Smaller suppression (and weak centrality dependence, not shown)

More charm quarks at low p_{T} and mid-rapidity

> Consistent with (re)combination scenarios

[B. Paul, 6/7 10:30]

ALICE Highlights – EPS-HEP 2017

Information on:

- parton-to-jet fragmentation
- intra-jet distributions (**broadening, collimation**)
- quark/gluon differences

[C. Nattrass, 7/7, 15:00] [G. Milhano, 7/7 14:30] [M. Nguyen, today]

Jet shapes are constructed taking a weighted sum over the 4-momenta of all jet constituents

Information on:

- parton-to-jet fragmentation
- intra-jet distributions (**broadening, collimation**)
- quark/gluon differences

[C. Nattrass, 7/7, 15:00] [G. Milhano, 7/7 14:30] [M. Nguyen, today]

Jet shapes are constructed taking a weighted sum over the 4-momenta of all jet constituents Example: Jet Mass

 $M = \sqrt{E^2 - p_{\rm T}^2 - p_{\rm z}^2},$

Information on:

- parton-to-jet fragmentation
- intra-jet distributions (**broadening, collimation**)
- quark/gluon differences

Fair **agreement** between **data and PYTHIA** in pp (for all the jet shapes) \Rightarrow Use PYTHIA as reference for Pb-Pb (not enough pp data at reference energy)

[C. Nattrass, 7/7, 15:00] [G. Milhano, 7/7 14:30] [M. Nguyen, today]

Jet shapes are constructed taking a weighted sum over the 4-momenta of all jet constituents Example: Jet Mass

$$M = \sqrt{E^2 - p_{\rm T}^2 - p_{\rm T}^2}$$

Information on:

- parton-to-jet fragmentation
- intra-jet distributions (**broadening, collimation**)
- quark/gluon differences

Fair **agreement** between **data and PYTHIA** in pp (for all the jet shapes) \Rightarrow Use PYTHIA as reference for Pb-Pb (not enough pp data at reference energy)

Agreement PYTHIA / Pb-Pb data: no mass modifications, lack of intrajet broadening Hint for slightly more collimated jets (see also other jet shapes)

[C. Nattrass, 7/7, 15:00] [G. Milhano, 7/7 14:30] [M. Nguyen, today]

Jet shapes are constructed taking a weighted sum over the 4-momenta of all jet constituents Example: Jet Mass

$$M = \sqrt{E^2 - p_{\rm T}^2 - p_{\rm T}^2}$$

Energy loss in p-Pb?

Many similarities between pp/p-Pb/Pb-Pb: is there also jet quenching in small systems?

Energy loss in p-Pb?

Many similarities between pp/p-Pb/Pb-Pb: is there also jet quenching in small systems?

No evidence for suppression in p-Pb (so far)

New measurement of **D** R_{pPb} and **first measurement** of the $\Lambda_c R_{pPb}$

Ac and **D** R_{pPb} compatible

ALICE-PUBLIC-2017-008 [C.Terrevoli, 6/7 15:45]

Ac and **D** R_{pPb} compatible

D meson R_{pPb} vs models

Medium effects

Ac and **D** R_{pPb} compatible

D meson $R_{\rm pPb}$ vs models

Medium effects

Ac and **D** R_{pPb} compatible

New measurement of **D** R_{pPb} and first measurement of the $\Lambda_c R_{pPb}$

D meson $R_{\rm pPb}$ vs models

ALICE-PUBLIC-2017-008 [C.Terrevoli, 6/7 15:45]

Ultra Peripheral Collisions

Ultra Peripheral Collisions (UPC): collisions with $b > 2 \times$ Lead Radius γ – Nucleus interaction: clean probe and information on nuclear effects (e.g. shadowing) Indicate moderate shadowing

[V. Pozdniakov, 6/7 18:15]

Ultra Peripheral Collisions

ALI-DER-117542

Ultra Peripheral Collisions (UPC): collisions with $b > 2 \times$ Lead Radius - Nucleus interaction: clean probe and information on nuclear effects (e.g. shadowing) Indicate moderate shadowing

[V. Pozdniakov, 6/7 18:15]

ALICE

Data taking and upgrade

Status of the data taking

Run 2: Collected (Goal)

	pp, 5 TeV	pp, 13 TeV	p-Pb, 5 TeV	p-Pb, 8 TeV	Pb-Pb 5 TeV
Lint	112 nb ⁻¹ (1 pb ⁻¹)	14 (<mark>50</mark>) pb ⁻¹	3.4 nb ⁻¹	21 nb ⁻¹	250 µb ⁻¹ (1 nb-1)
N _{MB}	128 (<mark>1000</mark>) M	1.5 G (<mark>3.7 G</mark>)	764 M	70 M	157M (<mark>250M</mark>)
Nнм	N/A	814 M (<mark>2.5 G</mark>)	N/A	47 M	(200 M)

Data Taking in 2017

Status of the data taking

Run 2: Collected (Goal)

	pp, 5 TeV	pp, 13 TeV	p-Pb, 5 TeV	p-Pb, 8 TeV	Pb-Pb 5 TeV
Lint	112 nb ⁻¹ (1 pb ⁻¹)	14 (<mark>50</mark>) pb ⁻¹	3.4 nb ⁻¹	21 nb ⁻¹	250 µb⁻¹ (1 nb-1)
N _{MB}	128 (<mark>1000</mark>) M	1.5 G (<mark>3.7 G</mark>)	764 M	70 M	157M (250M)
Nнм	N/A	814 M (<mark>2.5 G</mark>)	N/A	47 M	(200 M)

Data Taking in 2017

ALICE Upgrade

TPC:

Main ALICE Tracker 4-GEM stack for endcaps (suppress ion back flow with continuous operations)

[C. Lippmann, 8/7 10:00]

Inner Tracker:

Low p_{T} tracking Monolithic Active Pixel Sensors, very low material budget (0.3%-1%) X₀

+ online/offline system, trigger and readout upgrades CERN-LHCC-2013-019; CERN-LHCC-2013-020 CERN-LHCC-2013-024 CERN-LHCC-2015-001 CERN-LHCC-2015-002 CERN-LHCC-2015-006 ALICE Highlights – EPS-HEP 2017

M. Floris

Goals: study rare low p_T probes (heavy flavor, low mass dielectrons, nuclei): Cannot be triggered! ⇒ Continuous readout and data reduction via (semi)online reconstruction **Several** detector, electronics and computing **upgrades** Deployment: LS2 (2019-2020), Data taking: Run 3-4 (2021-2029)

Forward detectors:

FIT for trigger and centrality, Silicon in the forward region to add vertexing to the muon arm

Other Results

Tremendous activity to understand similarities between pp/p-Pb/Pb-Pb:

- Paradigm shift in the description of hadronic collisions
- Challenges to the accepted soft QCD (universality of fragmentation) (and QGP (thermalization) models?
- Precursor phenomena? QGP created in pp collisions??

Tremendous activity to understand similarities between pp/p-Pb/Pb-Pb:

- Paradigm shift in the description of hadronic collisions
- Challenges to the accepted soft QCD (universality of fragmentation) and QGP (thermalization) models?
- Precursor phenomena? QGP created in pp collisions??

Progress in the characterization of the QGP created in heavy-ion collisions

• Run 2 (Pb–Pb at 5 TeV): similar trends, more data \Rightarrow **precise** characterization

Tremendous activity to understand similarities between pp/p-Pb/Pb-Pb:

- Paradigm shift in the description of hadronic collisions
- Challenges to the accepted soft QCD (universality of fragmentation) and QGP (thermalization) models?
- Precursor phenomena? QGP created in pp collisions??

Progress in the characterization of the QGP created in heavy-ion collisions • Run 2 (Pb–Pb at 5 TeV): similar trends, more data \Rightarrow **precise** characterization

- ALICE specialities!
- More to come with the upgrade: high Pb-Pb luminosity and improved tracking

These programs require good low and high p_{T} tracking and particle identification:

Thermal Radiation

A long-lived, interacting, (thermalized) system emits thermal radiation Seen as virtual photons producing (excess) dilepton pairs Relevant *p*_T ~ mass ~*T* = O(100 MeV)

Very challenging measurement, see ALICE upgrade (also in Pb–Pb, also addresses chiral symmetry restoration at high temperature)

Low-mass dileptons in HM events consistent with expectations from hadronic sources

5x more data available in the 2016 data sample + Machine-Learning based analysis

Ultra-peripheral collisions

- Very clean signature two or four tracks in an otherwise empty detector
- Decay channels:
 - $\rho^{o} \rightarrow \pi^{+} \pi^{-}$
 - $J/\psi \to l^+ l^-$
 - □ ψ(2S) -> l+ l-
 - ψ(2S) -> J/ψ π⁺ π⁻

Central J/ $\psi \rightarrow \mu^+ \mu^-$

Quarkonia R_{pPb}

R_{pPb} also affected by initial-state **nuclear effects** (e.g. nPDF) Difference in R_{pPb} of J/psi and $\psi(2s)$

Not expected from initial production \Rightarrow Indication of final state effects?

New 8 TeV results allow more detailed studies!

ALICE Highlights – EPS-HEP 2017

Blast Wave Fits

Blast Wave is a hydro-inspired parameterization Fit to PID spectra and extract freeze-out parameters

Blast Wave Fits

Blast Wave is a hydro-inspired parameterization Fit to PID spectra and extract freeze-out parameters Fit to π , K, p predicts Λ , Ξ , Ω shape at low p_{\top}

Blast Wave Fits

Blast Wave is a hydro-inspired parameterization Fit to PID spectra and extract freeze-out parameters Fit to π , K, p predicts Λ , Ξ , Ω shape at low p_{\top}

ALI-PREL-122512

M. Floris

G.Bencedi, Wigner RCP

J/W RAA in Pb-Pb

M. Floris

• Þ.

ALICE Highlights — EPS-HEP 2017

CONSTR.

11 atrailer

39

v₂{2PC, sub}

ALI-PUB-52116

40

41

Charmed baryons in pp/p-Pb

First cross section measurement of Ξ_c^{0} in pp and Λ_c^{+} in p-Pb (and mid-y pp) at LHC

Not reproduced by pQCD+fragmentation models Important constraints on charm hadronization and nuclear effects!

