#### **Highlights from EPS 2017**

Paris Sphicas CERN & NKUA (Athens) EPS HEP 2017, Venice, July 12, 2017

#### **Highlights from EPS 2017**

Paris Sphicas CERN & NKUA (Athens) EPS HEP 2017, Venice, July 12, 2017

# **Non-introduction**

Thankfully, no-one is expecting a "summary" I am grateful to the plenary speakers and session conveners Copyright to Any–and–All mistakes in this talk: held by the Speaker – All Rights Reserved.

#### **HEP Panorama**

- The Highest Energies
  - Our pride, source of great hope(s); SM, Higgs, BSM, Flavor, matter at its extremes
- The neutrino sector
  - Cause v's are so very different; PMNS, fermion nature, BSM, sterility
- The dark sector
  - The experimental evidence for physics outside the SM
- The cosmos
  - Not strictly always "particle" physics; equally fundamental
- Dedicated-measurement experiments
  - Complementary to high E; fundamental symmetries
- Theory: because we need to understand what we're doing

# **The Standard Model**

It's about time we change its name to Standard Theory

## The highest energies

#### The LHC and its experiments Operating Great Again

#### CMS Integrated Luminosity, pp Data included from 2010-03-30 11:22 to 2017-06-24 21:31 UTC **60** 2 2010, 7 TeV, 45.0 pb ط 50 2011, 7 TeV, 6.1 fb<sup>-1</sup> 50 Luminosity 0 2012, 8 TeV, 23.3 fb 2015, 13 TeV, 4.2 fb 2016, 13 TeV, 40.8 fb 40 2017, 13 TeV, 3.6 fb 30 30 Total Integrated 2 Jun 1 Sep 1.0ct 1 NOV 1 APT 1 May 2 141 1 AUG 1 Dec Date (UTC)





#### High machine availability

~ 50 % (many HW issues fixed) High luminosity lifetime (improved knowledge of machine parameters for operation)

High peak luminosity (small beam size from injectors and stronger focussing) Still room for improvement in 2017&18 More bunches, higher bunch intensity, stronger focussing





## SM Highest E; EWSB ("Higgs" sector) (I)

#### Beyond All Doubt: it is a Higgs



JP=0+

t,b,µ points: slight overstatement

Still in Doubt: is it *the* Higgs? → establish production and decay (AMAP)







P. Sphicas Highlights from EPS 2017

#### SM EWSB/H sector (II): noteworthy



P. Sphicas Highlights from EPS 2017

## SM EWSB/H sector (III): noteworthy

#### ■ Coupling to the top quark (special: y<sub>t</sub>≈1)

H-t coupling: ttH production elusive (~1/100 of ggH) Up to last week: ~hints





### SM EWSB/H sector (IV): for the future



#### **Increased statistics**





#### HH : within factor 20 of SM→HL-LHC









ATLAS arXiv:1705.04582 Events / 2 GeV + Data aaF × 100 ATLAS Drell-Yan - VBF × 100 10<sup>6</sup> vs = 13 TeV, 36,1 fb Тор VH × 100 Diboson 10 10<sup>4</sup> ~200 signal events 10<sup>3</sup> 10 Data/MC 0.8 0.6Ē 110 120 125 130 135 140 145 155 m<sub>μμ</sub> [GeV]

#### Rare decays...

| Process                                     | σ/σ <sub>SM</sub> (95% CL)  |  |  |
|---------------------------------------------|-----------------------------|--|--|
| H→Zɣ (ATLAS)<br>36fb <sup>-1</sup> @ 13 TeV | <6.6                        |  |  |
| H→Zɣ (CMS)                                  | <9                          |  |  |
| H→γ*γ (CMS)<br><sub>Run1</sub>              | <7.7                        |  |  |
| H→J/Ψγ (ATLAS)<br><sub>Run1</sub>           | <540                        |  |  |
| H→J/Ψγ (CMS)<br><sub>Run1</sub>             | <540                        |  |  |
| H→ <b>ϱγ (ATLAS)</b><br>36 fb-1 @ 13 TeV    | <52                         |  |  |
| H→φγ (ATLAS)<br>36 fb-1 @ 13 TeV            | <208                        |  |  |
| H→ee (CMS)<br><sub>Run1</sub>               | <~10 <sup>5</sup>           |  |  |
| Run<br>Run                                  | 1 <b>36 fb<sup>-1</sup></b> |  |  |

#### P. Sphicas Highlights from EPS 2017

## SM, Highest E; SM minus Higgs



P. Sphicas Highlights from EPS 2017

## SM, Highest E; EWK precision tests



So what next? Theory errors:  $M_w = 80.358 \pm 0.008 \text{ GeV}$  $M_{t} = 177.0 + 2.3 - 2.4 \text{ GeV}$  $\Delta m_t^{exp} < \Delta m_t^{the}$  $\rightarrow$  Experiment: more work on m<sub>w</sub> needed!



sin<sup>2</sup> θ<sup>lept</sup>

## **SM Strong Interaction (I)**



## In this universe



#### CERN scientists one step closer to unlocking key to Universe after LHC breakthrough

SCIENTISTS investigating the origins of the Universe through the Large Hadron Collider (LHC) are celebrating a major breakthrough.

http://www.express.co.uk/news/science/825660/ CERN-Large-Hadron-Collider-discovers-baryons

## **SM Strong Interaction (I)**



## In this universe



#### CERN scientists one step closer to unlocking key to Universe after LHC breakthrough

SCIENTISTS investigating the origins of the Universe through the Large Hadron Collider (LHC) are celebrating a major breakthrough.

# At the bottom, the reader can speak up:



http://www.express.co.uk/news/science/825660/ CERN-Large-Hadron-Collider-discovers-baryons

## **SM Strong Interaction (I)**



In a || universe





SU(4) flavor multiplets, PDG Review of Particle Physics, Phys.Rev. D86, 010001.

Quantitative testers of QCD rejoice! First observation of doubly-charmed baryon, the  $\Xi_{cc}^{++}$ 

SCIENTISTS investigating the origins of the Universe through the Large Hadron Collider (LHC) are celebrating a major breakthrough.

Food for thought for the Lattice

Food for thought for Outreach

http://www.express.co.univ/news/science/825660/ CERN-Large-Hadron-Collider-discovers-baryons

## **SM Strong Interaction (II)**



P. Sphicas Highlights from EPS 2017

# **Beyond the SM**

Supersymmetry Others

## Supersymmetry: how we got here

#### **SUSY Summary**

- SUSY discovery (should be) easy and fast
  - Expect very large yield of events in clean signatures (dilepton, diphoton).
    - Establishing mass scale is also easy (M<sub>eff</sub>)
- Squarks and gluinos can be discovered over very large range in SUGRA space (M<sub>0</sub>,M<sub>1/2</sub>)~(2,1)TeV
  - Discovery of charginos/neutralinos depends on model
  - Sleptons difficult if mass > 300 GeV
  - Evaluation of new benchmarks (given LEP, cosmology etc) in progress
- Measurements: mass differences from edges, squark and gluino masses from combinatorics
- Can extract SYSY parameters with ~(1-10)% accuracy

# Then, in 2012, we found a H boson at 125 GeV...



#### The 2012's: Full models too ambitious... [SUSY] only needs to be "natural"









Optimist's view: high A<sub>t</sub>. Theorist's view: not-soeasy to generate (large A<sub>t</sub>) Experimentalist's view: clearly, an SEP\*

P. Sphicas Highlights from EPS 2017

#### Supersymmetry: were we are today



#### Supersymmetry: what to do next

![](_page_18_Figure_1.jpeg)

P. Sphicas Highlights from EPS 2017

#### Non-SUSY BSM: vast, simply vast...

ATLAS Preliminary

#### ATLAS Exotics Searches\* - 95% CL Upper Exclusion Limits Status: July 2017

| Sta                 | tus: July 2017                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                                                                                                                 |                                                         |                                                            | $\int \mathcal{L} dt = 0$                                                                                                                                                                                                     | 3.2 – 37.0) fb <sup>-1</sup>                                                                                                                                                                                                                                                           | $\sqrt{s} = 8, 13 \text{ TeV}$                                                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Model                                                                                                                                                                                                                                                                                                                                                                                                             | <i>t</i> ,γ                                                                                                                    | Jets†                                                                                                                                                                           | $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$               | ∫£ dt[fb                                                   | <sup>-1</sup> ] Limit                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        | Reference                                                                                                                                                          |
| Extra dimensions    | $\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD OBH} \\ \text{ADD BH high } \Sigma p_T \\ \text{ADD BH high } \Sigma p_T \\ \text{ADD BH multijet} \\ \text{RSI } G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS } G_{KK} \rightarrow WW \rightarrow qq\ell\nu \\ \text{2UED / RPP} \end{array}$                                                               | $\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$ | $\begin{array}{c} 1-4 \ j \\ - \\ 2 \ j \\ \geq 2 \ j \\ \geq 3 \ j \\ - \\ 1 \ J \\ \geq 2 \ b_i \geq 3 \end{array}$                                                           | Yes<br>-<br>-<br>-<br>Yes<br>j Yes                      | 36.1<br>36.7<br>37.0<br>3.2<br>3.6<br>36.7<br>36.1<br>13.2 | Mo     7,27 5 M/       Mo     7,27 5 M/       Mo     8 5 TeV       Mo     8 5 TeV       Mo     6 2 5 TeV       Gar mass     6 25 TeV       Gar mass     4.1 TeV       Kon mass     1.6 TeV                                    | $\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ m &= 6, M_0 = 3 \text{ TeV, rot BH} \\ n &= 6, M_0 = 3 \text{ TeV, rot BH} \\ k/\overline{M}p_0 = 0.1 \\ k/\overline{M}p_1 = 1.0 \\ \hline \text{Tier} (1, 1), \mathcal{B}(A^{(1,1)} \to tt) = 1 \end{split}$             | ATLAS-CONF-2017-060<br>CERN-EP-2017-132<br>1703.09217<br>1606.02285<br>1512.02586<br>CERN-EP-2017-132<br>ATLAS-CONF-2017-051<br>ATLAS-CONF-2016-104                |
| Gauge bosons        | $\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to \ell\nu \\ \mathrm{HVT} \ V' \to WV \to qqqq \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HVT} \ V' \to WH/ \ Z\mathrm{H} \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HSM} \ W_R' \to tb \\ \mathrm{LRSM} \ W_R' \to tb \end{array}$ | $2 e, \mu$<br>$2 \tau$<br>-<br>$1 e, \mu$<br>$0 e, \mu$<br>multi-channe<br>$1 e, \mu$<br>$0 e, \mu$                            | -<br>2 b<br>≥ 1 b, ≥ 1J;<br>-<br>2 J<br>2 b, 0-1 j<br>≥ 1 b, 1 J                                                                                                                | -<br>2j Yes<br>Yes<br>-<br>Yes<br>-                     | 36.1<br>3.2<br>3.2<br>36.1<br>36.7<br>36.1<br>20.3<br>20.3 | 2"mass     4.5 TeV       2"mass     2.4 TeV       2"mass     2.4 TeV       2"mass     2.0 TeV       2"mass     2.0 TeV       V mass     2.3 TeV       V mass     2.30 TeV       W mass     1.92 TeV       W mass     1.72 TeV | $\Gamma/m = 3\%$<br>$g_V = 3$<br>$g_V = 3$                                                                                                                                                                                                                                             | ATLAS-CONF-2017-027<br>ATLAS-CONF-2017-050<br>1603.08791<br>ATLAS-CONF-2016-014<br>1706.04786<br>CERN-EP-2017-014<br>ATLAS-CONF-2017-055<br>1410.4103<br>1408.0896 |
| G                   | Cl qqqq<br>Cl ll qq<br>Cl uutt                                                                                                                                                                                                                                                                                                                                                                                    | −<br>2 e,μ<br>2(SS)/≥3 e,μ                                                                                                     | 2j<br>_<br>u≥1b,≥1j                                                                                                                                                             | -<br>Yes                                                | 37.0<br>36.1<br>20.3                                       | Λ                                                                                                                                                                                                                             | <b>21.8 TeV</b> $\eta_{LL}^-$<br><b>40.1 TeV</b> $\eta_{LL}^-$<br>$ C_{RR}  = 1$                                                                                                                                                                                                       | 1703.09217<br>ATLAS-CONF-2017-027<br>1504.04605                                                                                                                    |
| MQ                  | Axial-vector mediator (Dirac DM)<br>Scalar mediator <i>t</i> -ch. (Dirac DM)<br>Vector mediator (Dirac DM)<br>VV <sub>XX</sub> EFT (Dirac DM)                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0 \; e, \mu \\ 0 \; e, \mu \\ 0 \; e, \mu, 1 \; \gamma \\ 0 \; e, \mu \end{array}$                           | $\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ \leq 1 \ j \\ 1 \ J, \leq 1 \ j \end{array}$                                                                                            | Yes<br>Yes<br>Yes<br>Yes                                | 36.1<br>36.1<br>36.1<br>3.2                                | mass     1.5 TeV       mass     1.65 TeV       mass     1.2 TeV       M.     700 GeV                                                                                                                                          | $\begin{array}{l} g_{q}{=}0.25,  g_{\chi}{=}1.0,  m(\chi) < 400   {\rm GeV} \\ g{=}1,  m(\chi) - m(\eta) < 500   {\rm GeV} \\ g_{q}{=}0.25,  g_{\chi}{=}1.0,  m(\chi) < 480   {\rm GeV} \\ m(\chi) < 150   {\rm GeV} \end{array}$                                                      | ATLAS-CONF-2017-060<br>ATLAS-CONF-2017-060<br>1704.03848<br>1608.02372                                                                                             |
| ۲0                  | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                                                                                   | 2 e<br>2 μ<br>1 e,μ                                                                                                            | $ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array} $                                                                                             | -<br>-<br>Yes                                           | 3.2<br>3.2<br>20.3                                         | LO mass 1.1 TeV<br>LO mass 1.05 TeV<br>LO mass 640 GeV                                                                                                                                                                        | $\beta = 1$<br>$\beta = 1$<br>$\beta = 0$                                                                                                                                                                                                                                              | 1605.06035<br>1605.06035<br>1508.04735                                                                                                                             |
| Heavy quarks        | $ \begin{array}{l} VLQ\; TT \rightarrow Ht + X \\ VLQ\; TT \rightarrow Zt + X \\ VLQ\; TT \rightarrow Wb + X \\ VLQ\; BB \rightarrow Hb + X \\ VLQ\; BB \rightarrow Zb + X \\ VLQ\; BB \rightarrow Zb + X \\ VLQ\; BB \rightarrow Wt + X \\ VLQ\; QQ \rightarrow WqWq \\ \end{array} $                                                                                                                            | 0 or 1 e,µ<br>1 e,µ<br>1 e,µ<br>2/≥3 e,µ<br>1 e,µ<br>1 e,µ                                                                     | $\geq 2 b, \geq 3$<br>$\geq 1 b, \geq 3$<br>$\geq 1 b, \geq 1 J_0$<br>$\geq 2 b, \geq 3$<br>$\geq 2/\geq 1 b$<br>$\geq 1 b, \geq 1 J_0$<br>$\geq 1 b, \geq 1 J_0$<br>$\geq 4 j$ | j Yes<br>j Yes<br>2j Yes<br>j Yes<br>-<br>2j Yes<br>Yes | 13.2<br>36.1<br>20.3<br>20.3<br>36.1<br>20.3               | Timus     1.2 TeV       Timus     1.16 TeV       Timus     1.35 TeV       Binas     700 GeV       Binas     700 GeV       Binas     700 GeV       Binas     700 GeV       Binas     690 GeV                                   | $\begin{split} & \mathcal{B}(T \to Ht) = 1 \\ & \mathcal{B}(T \to Zt) = 1 \\ & \mathcal{B}(T \to Wb) = 1 \\ & \mathcal{B}(B \to Hb) = 1 \\ & \mathcal{B}(B \to Hb) = 1 \\ & \mathcal{B}(B \to Zb) = 1 \\ & \mathcal{B}(B \to Wt) = 1 \end{split}$                                      | ATLAS-CONF-2016-104<br>1705.10751<br>CERN-EP-2017-094<br>1505.04306<br>1409.5500<br>CERN-EP-2017-094<br>1509.04261                                                 |
| Excited<br>fermions | Excited quark $q^* \rightarrow qg$<br>Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $b^* \rightarrow bg$<br>Excited quark $b^* \rightarrow Wt$<br>Excited lepton $t^*$<br>Excited lepton $v^*$                                                                                                                                                                                                         | -<br>1 γ<br>-<br>1 or 2 e,μ<br>3 e,μ<br>3 e,μ,τ                                                                                | 2 j<br>1 j<br>1 b, 1 j<br>1 b, 2-0 j<br>-<br>-                                                                                                                                  | -<br>-<br>Yes<br>-<br>-                                 | 37.0<br>36.7<br>13.3<br>20.3<br>20.3<br>20.3               | of mass     6.0 TeV       of mass     5.3 TeV       bf mass     2.3 TeV       bf mass     1.3 TeV       of mass     3.0 TeV       of mass     1.0 TeV                                                                         | only $u^*$ and $d^*$ , $\Lambda = m(q^*)$<br>only $u^*$ and $d^*$ , $\Lambda = m(q^*)$<br>$f_g = f_L = f_R = 1$<br>$\Lambda = 3.0 \text{ TeV}$<br>$\Lambda = 1.6 \text{ TeV}$                                                                                                          | 1703.09127<br>CERN-EP-2017-148<br>ATLAS-CONF-2016-060<br>1510.02664<br>1411.2921<br>1411.2921                                                                      |
| Other               | LRSM Majorana $\nu$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$<br>Monotop (non-res prod)<br>Multi-charged particles<br>Magnetic monopoles                                                                                                                                                                                                            | 2 e, μ<br>3,4 e, μ (SS<br>3 e, μ, τ<br>1 e, μ<br>-<br>-<br>= 8 TeV                                                             | 2 j<br>3) -<br>1 b<br>-<br>-<br>√s = 1                                                                                                                                          | -<br>-<br>Yes<br>-<br>-<br>3 TeV                        | 20.3<br>36.1<br>20.3<br>20.3<br>20.3<br>7.0                | 2.0 TeV/       HM* mass     870 GeV/       HM* mass     870 GeV/       Start Cover     657 GeV/       multi-charged parties mass     785 GeV       monopoliti mass     134 TeV                                                | $ m(W_{\rm fit}) = 2.4 \text{ TeV, no mixing} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ a_{\rm source} = 0.2 \\ \text{DY production},  q  = 5e \\ \text{DY production},  q  = 1g_D, \text{spin } 1/2 \\ \text{Mass scale [TeV]} $ | 1506.06020<br>ATLAS-CONF-2017-053<br>1411.2921<br>1410.5404<br>1504.04188<br>1509.08059                                                                            |

\*Only a selection of the available mass limits on new states or phenomena is shown +Small-radius (large-radius) jets are denoted by the letter j (J).

![](_page_19_Figure_4.jpeg)

#### CMS long-lived particle searches, lifetime exclusions at 95% CL

#### P. Sphicas Highlights from EPS 2017

EPS HEP 2017, Venic July 12, 2017

RPV SUSY, T → bl. m(T) = 420 GeV 8 TeV, 19 7 fb<sup>-1</sup> (displaced leptons H → XX (10%), X → ee, m(H) = 125 GeV, m(X) = 20 GeV 8 TeV, 19.6 fb<sup>-1</sup> (displaced leptons

#### Non-SUSY BSM: vast, simply vast...

![](_page_20_Figure_1.jpeg)

# **Physics of Flavor**

CP violation, CKM triangle(s) Rare processes Windows to new physics? (or lessons in statistics and/or systematics in theory calculations)?

## **Flavor Physics: CKM**

 γ: arg(V<sub>ub</sub>);
aka "the tough one"
aka "the DK angle"
(D<sub>s</sub>K, DK, D\*K...)
Tricks to correct for penguins/FSI...

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

V<sub>cb</sub> & V<sub>ub</sub> Tension in inclusive vs exclusive determinations: still there; but hard to get excited given uncertainties, D\*\*, etc

P. Sphicas Highlights from EPS 2017

![](_page_22_Figure_7.jpeg)

#### Flavor Physics: rare processes (I)

![](_page_23_Figure_1.jpeg)

# Flavor Physics: rare processes (II)

![](_page_24_Figure_1.jpeg)

HEP 2017, Venice

uly 12, 2017

in R(K), R(K\*) (eeK<sup>(\*)</sup> very, very hard)...

(https://indico.cern.ch/event/466934/contributions/2585682/)

![](_page_24_Figure_3.jpeg)

25

BaBa

#### **Favor: Non-b sector**

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

Muon LFV searches by dedicated experiments Final MEG upper limit  $B(\mu \rightarrow e\gamma)$ <4.2 10<sup>-13</sup> @90% CL 2017: relatively quiet year Exciting times ahead with MEGII, Mu2e, COMET, Mu3e

# **Extreme Matter**

Evolution: physics studies of matter at its extreme started with Heavy lons. Then it spilled over to nucleon-nucleon... and then to nucleon-HI... Emerging picture of describing all three

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

•►<•

## **Heavy Ion Physics**

# **Charles Gale ICHEP'14**

Initial state Pre-equilibrium

QGP

Hadronization

#### Thermal freeze-out

- Soft Probes (strangeness enhangement)
  - Reason behind building and
- Collective phenomena. -
- Suppression phenomena
  - $J/\psi$  (since ~ever in the field) and Y production
  - Rich physics in Hard Probes (jets vs  $\gamma$ /W/Z); a present from RHIC to the LHC

 $\sim 20 \, \text{fm/c}$ 

### From pp to pPb to PbPb

#### s enhancement

#### Strangeness increases with multiplicity also in pPb AND in pp

![](_page_28_Figure_3.jpeg)

![](_page_29_Figure_0.jpeg)

Highlights from EPS 2017

EPS HEP 2017, Venice July 12, 2017

## Heavy ions: suppression & hard(er) probes

![](_page_30_Figure_1.jpeg)

pPb: Suppr(J/ $\psi$ )  $\approx$ Suppr(D<sup>0</sup>)

100 < p<sub>T. ch iet</sub> < 120 GeV/c

JEWEL + PYTHIA 0-10% Pb-Pb

- - Recoil on 

M<sub>ch iet</sub> (GeV/c<sup>2</sup>)

100 < p\_ < 126 Ge

0.3 0.4 0.5 0.6 0.7 0.8

![](_page_30_Figure_3.jpeg)

#### ATLAS, arXiv:1706.09363 ATLAS Preliminary 126 < PT < 158 anti-k, R = 0.4 jets, Vs.a. = 2.76 TeV 2011 Pb+Pb data, 0.14 n 2013 pp data, 4.0 pb 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P. Sphicas Highlights from EPS 2017

# The elusive neutrino(s)

The very nature:

Oscillations, more mass generation questions (beyond EWSB?) Richness of the lepton sector (PMNS, CP violation) Majorana/Dirac... Sterile neutrinos?

#### **Neutrinos: oscillations (I)**

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

Highlights from EPS 2017

EPS HEP 2017, Venice July 12, 2017

![](_page_34_Figure_0.jpeg)

Highlights from EPS 2017

![](_page_35_Figure_0.jpeg)

## **Neutrinos: sterile sector (?)** $\nu_{\mu} \rightarrow \nu_{e}$

![](_page_36_Figure_1.jpeg)

P. Sphicas Highlights from EPS 2017

# **The Dark Sector**

#### **The Dark Sector**

- An experimental Fact & still a TOTAL mystery
- Nightmare scenario: totally dark
  - Only Gravity to play with...

![](_page_38_Picture_4.jpeg)

More promising: several (3? 20? more?) shades of grey

![](_page_38_Figure_6.jpeg)

## **DM: direct detection experiments (I)**

![](_page_39_Figure_1.jpeg)

P. Sphicas Highlights from EPS 2017

#### **Ow indirect searches: cosmic ray expts**

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

![](_page_40_Figure_3.jpeg)

![](_page_40_Figure_4.jpeg)

P. Sphicas Highlights from EPS 2017

#### **DM** indirect searches: $\gamma$ -ray expts

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

Clearly, experiments have evolved significantly; Caveats: not in control of the beam; not in control of the space between the source and the experiment; "limits are easy; signal very hard!"

![](_page_41_Figure_4.jpeg)

#### Excess - significant? DM???

![](_page_41_Figure_6.jpeg)

Accounts for much of the effect?

![](_page_41_Figure_8.jpeg)

P. Sphicas Highlights from EPS 2017 EPS HEP 2017, Venice July 12, 2017

0°

l [deg]

350

# DM indirect detection: collider expts

Mediator

![](_page_42_Figure_1.jpeg)

2.5

Mediator Mass [TeV]

## The rest of the Universe

CMB, Dark Energy, Gravitational physics

#### CMB & DE

![](_page_44_Figure_1.jpeg)

Highlights from EPS 2017

#### **The Cosmos: GW Wave spectrum**

![](_page_45_Figure_1.jpeg)

#### The Cosmos & Grav Waves

![](_page_46_Figure_1.jpeg)

P. Sphicas Highlights from EPS 2017 EPS HEP 2017, Venice July 12, 2017

X-ray

# The enablers

Machines Detectors

#### **Detector developments**

![](_page_48_Figure_1.jpeg)

#### **Towards a new machine**

![](_page_49_Figure_1.jpeg)

"Technically limited schedule"

As for next step in energy: driven by magnets... begs for more investment on this front And of course on new acceleration methods.

# Some parting thoughts

Instead of a summary of the highlighted highlights...

# What if we don't find new physics in Run II/Run III? Fundamentalitis

- Fundamentalitis is "a serious condition that causes its victims to believe that the only thing worth thinking about is the deep nature of reality as manifested through the fundamental laws of physics."
  - Two notable examples from giants of physics: Einstein (well known, on GUT) and Oppenheimer. Take the latter:
    - In 1939 (with Snyder) started BH physics: he showed that an in-falling observer on the surface of an object whose mass exceeded a critical mass would appear to be in a state of perpetual free fall to an outsider.
    - Then Oppenheimer forgot all about it and never said anything about black holes for the rest of his life. (Getting distracted by the bomb helped)
  - For Oppenheimer, BHs were mundane: they were but particular solutions of GR; The big deal was GR itself.

#### Freeman Dyson:

- "Oppenheimer in his later years believed that the only problem worthy of the attention of a serious theoretical physicist was the discovery of the fundamental equations of physics. Einstein .... felt the same way... Once you had discovered the right equations, then the study of particular solutions of the equations would be a routine exercise for second-rate physicists or graduate students."
- Similarly, Einstein spent his last few years in a futile search for a Grand Unified Theory (took things to the ultimate, as far as doubting QM)
- Fast-forward in BH physics: Hawking radiation; Bekenstein entropy; nowadays: link between information theory and BH physics; the firewall (?)... or non-locality (e<sup>-S</sup>)...

http://blogs.scientificamerican.com/the-curious-wavefunction

### The panorama of particle physics, again

#### Energy Frontier, the LHC, is en route to

- Probing the Higgs sector; exploring BSM
- Completing the physics of flavor in the quark sector
- Providing a new picture of hadronic matter
- And on the side: providing important information on DM
- Neutrinos: weakly interacting so least known thus far
  - Exciting sneak preview of CP violation? En route to PMNS...
  - Mass generation mechanism beyond EWSB and H...
  - Very promising program of work and experiments ahead
- Dark Matter: if it's some shade of grey, we'll see it
  - Direct experiments are approaching the neutrino wall
  - Tantalizing hint from astrophysics; LHC complementary

#### The Cosmos

- Only place where we can play with gravity; and where densities can be very high
- The scientific program being laid out holds tremendous promise
- Fundamental measurements
  - They remain so; a surprise can show up at any time

# All in all:

It's still extremely interesting to be in Particle Physics

# All in all:

- It's still extremely interesting to be in Particle Physics
- And it's still an honor and a privilege (to be in Particle Physics)

# All in all:

- It's still extremely interesting to be in Particle Physics
- And it's still an honor and a privilege (to be in Particle Physics)

Warm thanks to the organizers for a beautiful and stimulating conference!