

A glimpse at WWy and WZy with ATLAS

Julia I. Djuvsland on behalf of the ATLAS Collaboration

Kirchhoff-Institute for Physics, Heidelberg University, julia.djuvsland@kip.uni-heidelberg.de

3 final states:

evµvγ

• evjjy

μvjjγ

• 1 *e* and 1 μ , p_{τ} > 20 GeV

• $\geq 1 \gamma, E_{T} > 15 \text{ GeV}$

• No jets, $p_{_{\rm T}}$ > 25 GeV

• $E_{\tau}^{\text{miss,rel}} > 15 \text{ GeV}$

• *m*_" > 50 GeV

• 1 *e* or 1 μ, *p*_T > 25 GeV • $\geq 1 \gamma, E_{T} > 15 \text{ GeV}$ • \geq 2 jets, no *b*-jets, p_{τ} > 25 GeV, • $E_{T}^{miss} > 30 \text{ GeV}, m_{T} > 50 \text{ GeV}$ • 70 GeV < *m*_{ii} < 100 GeV

*ev*jjy and μv jjy:

Tile calorimeters

LAr hadronic end-cap and

LHC pp $\sqrt{s} = 7$ TeV

Cpp √s = 8 TeV

data/theory

forward calorimeters

LAr electromagnetic calorimeters

Pixel detector

Triboson production at ATLAS

Production examples:

Includes quartic gauge vertices

→ Measurement tests non-Abelian structure

Determined by the Standard Model

 \rightarrow Sensitive to new physical phenomena

Low production cross-section

 \rightarrow Need efficient selection criteria to isolate signal

Analysed fully- and semi-leptonic final states $\rightarrow ev\mu vy$, evjjy, $\mu vjjy$ using 20.2 fb⁻¹ of 8 TeV pp data

Other ATLAS and CMS measurements:

 \rightarrow WVy (V = hadronically decaying W or Z) [1], Wyy [2,3], *Zүү* [3,4], *WWW* [5]

Results

evµvy production cross-section $\sigma_{fid}^{e \vee \mu \vee \gamma} = (1.5 \pm 0.9 (\text{stat.}) \pm 0.5 (\text{syst.})) \text{ fb}$ with 1.4σ significance (1.6 σ expected)

→ Agreement with NLO prediction VBFNLO: $\sigma_{theo.}^{e \vee \mu \vee \gamma} = (2.0 \pm 0.1) \text{ fb}$

Upper exclusion limits on *evjjy*, *µvjjy* and *lvjjy* production cross-section

 \rightarrow As low as 2.5 x Standard Model cross-section

Interpretation using effective field theory:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{j=0}^{7} \frac{f_{M,j}}{\Lambda^4} O_{M,j} + \sum_{j=0,1,2,5,6,7} \frac{f_{T,j}}{\Lambda^4} O_{T,j},$$

with operators of dimension eight and dipole form factor: $(1+\hat{s}/\Lambda_{EE}^{2})^{-2}$ with form factors scale Λ_{EE}

 \rightarrow Limits on 14 anomalous quartic coupling parameters unitarised (Λ_{FF} = 0.5 and 1 TeV) and non-unitarised ($\Lambda_{rr} = \infty$)

Background Estimation

Main challenge: Background from misidentified objects

 \rightarrow Contribute due to low cross-section of signal process

 $ev\mu vy$ final state

• WWY Fake γ from jets

evjjy and μv jjy final states

From data:

• Fake *y* from *e* estimated using $Z \rightarrow ee$ decays • Fake *y* and fake *e* from jets estimated simultaneously using two 2D sideband methods:

Sidebands defined by object isolation energy, photon identification criteria and electron-jet event selection. Background estimation combined using likelihood formulation.

From Monte Carlo:

• $t\bar{t}\gamma$, $Z\gamma$, $WZ\gamma$, $WW\gamma$ (τ decays), Wt, ZZ, fake μ from jets using the MadGraph, SHERPA and POWHEG-BOX generators

From data:

• Fake *y* from *e* estimated using $Z \rightarrow ee$ decays • W_Y +jets, fake γ and fake leptons from jets estimated simultaneously by combining m_{ii} fit, E_{τ}^{miss} fit and 2D sideband method with inverted m_{μ} requirement:

2D sideband method as done for $ev\mu vy$ final state. Maximum likelihood fits use shape templates from simulation for all backgrounds apart from fake γ and fake leptons from jets shape templates that are obtained from data.

From Monte Carlo: • $t\bar{t}\gamma$, $Z\gamma$ +jets, $WV\gamma$ (τ decays) using the MadGraph and SHERPA generators

[1] CMS Collaboration, Phys. Rev. D 90 (2014) 032008. [2] ATLAS Collaboration, Phys. Rev. Lett. 115 (2015) 031802. [3] CMS Collaboration, arXiv: 1704.00366 [hep-ex], submitted to JHEP. [4] ATLAS Collaboration, Phys. Rev. D 93 (2016) 112002. [5] ATLAS Collaboration, Eur. Phys. J. C 77 (2016) 141.

