Search for additional Higgs Bosons in tt Final States including interference effects

J. Katharina Behr¹ for the ATLAS Collaboration ¹**DESY**

1. Why look for additional Higgs Bosons?

- ► The Standard Model is incomplete.
 - No candidate for Dark Matter, hierarchy problem, ...
- ▶ Introduce a second scalar complex doublet field \Rightarrow Two-Higgs-Doublet Models (2HDMs)
 - Simplest (not-strongly-constrained) extension of the SM Higgs sector
 - Motivated by e.g. SUSY (hMSSM) or axion models
- \triangleright Consider CP conserving potential with softly broken Z_2 symmetry

Higgs Bosons in a 2HDM	Free parameters
 CP-even: h⁰, H⁰ CP-odd: A⁰ Charged: H[±] 	 Higgs boson masses tan β: ratio of Higgs VEVs α: mass mixing between h and H Alignment limit: cos (β - α) = 0
	• <i>h</i> : 125 GeV boson with SM couplings

3. The Challenge: Interference

- Large irreducible background from SM $t\bar{t}$ (> 85% post selection)
- \blacktriangleright Dominated by $gg \rightarrow t\bar{t}$
- Strong interference with $gg \rightarrow A/H \rightarrow t\bar{t}$

2. Exploring the last Blind Spot

- Probe the 2D parameter space in $m_{A/H}$ and tan β
- ► Type-II 2HDM (e.g. hMSSM)
- Small tan $\beta \Rightarrow$ large couplings to up-type fermions (and vice versa)

- Significant off-shell peak from imaginary phase in production loop
- ▶ Width of *S* and *S* + *I* decreases with increasing $m_{A/H}$ and increasing tan β

5. Modelling Interference

- a) Signal process $gg \rightarrow A/H \rightarrow t\bar{t}$
- ► Model MADGRAPH_AMCATNLO v2.4.3
- Leading order in QCD
- Loop contributions from top and bottom quarks

b) Disentangle interference from SM $t\bar{t}$ background

- c) Signal parameter range
- ▶ $m_{A/H} \ge 500 \text{ GeV}$

Smaller masses require an accurate modelling of Higgs boson decays into virtual top quarks and the implementation of higher-order corrections not available in the MADGRAPH model.

d) Higher-order corrections

► Pure signal S:

$k_{S} = \sigma_{S}^{2\text{HDMC+SusHi}} / \sigma_{S}^{\text{MG,LO}}$

Interference term l

 $k_I = \sqrt{k_B \cdot k_S}$ with $k_B = \sigma_{t\bar{t}}^{\text{NNLO+NNLL}} / \sigma_{t\bar{t}}^{\text{MG,LO}} = 1.87$

- Most reliable background prediction from POWHEG+PYTHIA6
- Pure S + I component obtained by removing matrix element for SM $t\bar{t}$ background in MADGRAPH
- ► $\tan \beta \ge 0.4$
 - To ensure perturbativity of Higgs couplings.
- ► S and S + I samples for varying values of $(mA/H, \tan \beta)$ obtained from a few pure signal samples after the detector simulation via an event-by-event reweighting.

Signal-plus-interference S + I

 $(S+I) = [(S+I) - S] \cdot \mathbf{k}_I + S \cdot \mathbf{k}_S.$

6. Signal Regions

8. Dominant Systematic Uncertainties [Based on "resolved" selection in JHEP 08 (2015) 148]

Exactly one electron or muon

- $p_T > 25$ GeV, $|\eta| < 2.5$
- tight, mini-isolated
- \blacktriangleright $E_T^{\text{miss}} > 20 \text{ GeV}$
- $\blacktriangleright E_T^{\rm miss} + m_T^W > 60 \,\,{\rm GeV}$
- \geq 4 anti- $k_t R = 0.4$ jets
- $p_T > 25$ GeV, $|\eta| < 2.5$
- \blacktriangleright \geq 1*b*-tagged jets
- MV1 70% operating point

Six mutually exclusive signal regions

- *e*+jets and μ +jets channels
- ► Three *b*-tagging categories:
 - Both top-quark candidates have matching *b* jet
 - Only hadronic/leptonic top-quark candidate has matching *b* jet

7. Reconstruction

Signal

- ► Top-quark mass: $\Delta m_{top} = \pm 1$ GeV
- ► PDF
- Jet energy scale (JES)
- ► Factorisation/renormalisation scale
- Reweighting (S + I only)

Background

- \blacktriangleright *tt* production cross-section (± 6.5%)
- \blacktriangleright *tt* ISR/FSR modelling
- \blacktriangleright *t* \bar{t} PS + fragmentation
- ► JES

Impact on both shape and normalisation of $t\bar{t}$ invariant mass spectra taken into account.

9. Exclusion Limits

- Profile likelihood fit with uncertainties taken into account as nuisance parameters
- Shape of binned $m_{t\bar{t}}^{\text{reco}}$ distributions parameterised in terms of signal strength μ

 $\mu \cdot S + \sqrt{\mu} \cdot I + B = \sqrt{\mu} \cdot (S + I) + (\mu - \sqrt{\mu}) \cdot S + B.$

- Only bins with $m_{t\bar{t}}^{\text{reco}} > 320 \text{ GeV}$ considered to avoid threshold effects not perfectly described by the simulation.
- \blacktriangleright Limits are CL_s asymptotic limits at 95% confidence level

Experimental resolution for $t\bar{t}$ invariant mass: 8% for resonance mass of 500 GeV

- Benchmark: 2HDM in the alignment limit ($\mu = 1$)
- ► Three mass hierarchies:
 - $m_A \ll m_H$: Only A contribution in $t\bar{t}$ invariant mass spectrum
 - $m_H << m_A$: Only H contribution in $t\bar{t}$ invariant mass spectrum
 - $m_A = m_H$: Spectra add up. Motivated by the MSSM and EW precision constraints.

References: [1] ATLAS, CERN-EP-2017-134, to be submitted to PRL

