$t \bar{t} H$ in the Standard Model

Direct measurement of the $t \bar{t} H$ cross section offers unique access to the Yukawa coupling to decisively probe the Standard Model

$$
\mathcal{L}_{\text {Yukawa }}=-\sum_{f} \lambda_{f} \frac{\nu}{\sqrt{2}} \bar{\psi}_{f} \psi_{f}+\lambda_{f} \frac{1}{\sqrt{2}} \bar{\psi}_{f} \psi_{f} H
$$

Analysis Challenges

1. $t \bar{t} H$ is very rare compared to $t \bar{t}$ (main background):
$\sigma_{t \bar{t} H}=0.5071 \mathrm{pb}$ vs. $\sigma_{t \bar{t}}=831.76 \mathrm{pb} \quad\left(\mathrm{vs}_{\mathrm{s}}=13 \mathrm{Tev}, \mathrm{m}_{H}=125 \mathrm{Gev}\right)$
2. Irreducible backgrounds:
(e.g.) $t \bar{t} b \bar{W}$ has same final state and event topology
3. Uncertain background modeling:
$\Delta \sigma_{t \bar{t} b \bar{b}} \sim 50 \% \quad \rightarrow \quad \Delta \sigma_{t \bar{t} \bar{b}} \cong 7 \times \sigma_{t \vec{t} H}$

\rightarrow Challenging analyses require sophisticated methods

Event Categorization using Deep Learning

Precision of usual categorization scheme using jets \& b-tags degrades in events with high b-tag multiplicity
\rightarrow Probability to tag 4 b-tags with $\varepsilon_{b-\operatorname{tag}} \approx 70 \%$ is only $\mathbf{2 4 \%}$
\rightarrow Use DNNs to categorize using jets \& most probable process

Multi-class approach generates enriched categories for signal and each background
\rightarrow Backgrounds constrained separately in fitting procedure
\rightarrow Improves extraction of parameters of interest (POI)

DNN Discriminators

Output of categorization network yields powerful discriminators, one for each involved process vs. all other processes

Example

Output of $t \bar{t} H$ node

\rightarrow Works best in conjunction with DNN categorization
\rightarrow Improves simultaneous measurement of two POIs: fit of both $t \bar{t} H$ \& $t \bar{t} b \bar{b}$ can exploit both discriminators

