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Direct measurement of the ttH cross section 

offers unique access to the Yukawa coupling 

to decisively probe the Standard Model

ttH in the Standard Model
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1. ttH is very rare compared to tt (main background):           
σttH = 0.5071 pb   vs.  σtt = 831.76 pb   (√s = 13 TeV, mH = 125 GeV)

2. Irreducible backgrounds:                                         
(e.g.) ttbb has same final state and event topology

3. Uncertain background modeling:                                
∆ σttbb ∼ 50%     →     ∆ σttbb ≅ 7 × σttH

→ Challenging analyses require sophisticated methods
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Figure 26: Final discriminant shapes in all analysis categories in the dilepton channel after the
fit to data.
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Figure 26: Final discriminant shapes in all analysis categories in the dilepton channel after the
fit to data.
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Figure 9: Final discriminant shapes (MEM) in the analysis categories with � 4 jets,� 4 b-tags
with low (left) and high (right) BDT output in the dilepton channel after the fit to data (contin-
ued from Fig. 8).
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Figure 26: Final discriminant shapes in all analysis categories in the dilepton channel after the
fit to data.
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Event Categorization using Deep Learning
Precision of usual categorization scheme using jets & b-tags


degrades in events with high b-tag multiplicity 

→ Probability to tag 4 b-tags with εb-tag ≈ 70% is only 24%  

→ Use DNNs to categorize using jets & most probable process

DNN Discriminators

Events

Multi-classification
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Σ = 1

Use

  - number of jets

  - process with highest

     DNN output

Categorize

Multi-class approach generates enriched categories 

for signal and each background 

→ Backgrounds constrained separately in fitting procedure

→ Improves extraction of parameters of interest (POI)

EPS Conference on High Energy Physics 2017 Poster 861

Output of categorization network yields

powerful discriminators, one for


each involved process vs. all other processes

Output of ttH node Output of ttbb node

→ Works best in conjunction with DNN categorization

→ Improves simultaneous measurement of two POIs:

     fit of both ttH & ttbb can exploit both discriminators

Example
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Figure 6: Final discriminant shapes (MEM) in the analysis categories with 4 jets, 4 b-tags (top
row) and 5 jets,� 4 b-tags (bottom row) with low (left) and high (right) BDT output in the
lepton+jets channel after the fit to data.

2.3 The Higgs Boson

with the electroweak coupling constants g and g0. Both, the Z and W bosons are
massive while the photon remains massless as anticipated.

The mass of the fermions can be explained by introducing the Yukawa coupling
which is represented by LYukawa in the Lagrangian as

LYukawa = �
X

f

�f
⌫p
2| {z }

mass of
fermion f

 ̄f f + �f
1p
2
 ̄f fH (2.22)

for a single family of fermions. Except for neutrinos2, the extension to three families
requires the addition of flavor mixing. Technically, this is realized by the unitary
3⇥ 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix. Its elements describe a measure
of the transition probability between quarks mediated by the exchange of aW boson.

2.3 The Higgs Boson

This section elucidates the previously introduced Higgs boson in an experimental
context. To begin with, its properties are presented on the basis of latest results by
the ATLAS and the CMS collaborations. Consequently, details about its production
and decay characteristics in proton-proton colliders are given.

2.3.1 Higgs Boson Properties

In a seminar on 4 July 2012, both, the ATLAS and the CMS collaboration presented
preliminary results of the search for the Higgs boson. They announced the observa-
tion of a new boson with a mass between 125 and 126GeV that is consistent with
the Higgs boson as predicted by the SM. Figure 2.2 shows the invariant di-photon
mass spectrum for a combined measurement with an integrated luminosity of L =
5.1 fb�1 at a center-of-mass energy of 7TeV and L = 5.3 fb�1 at 8TeV. The com-
bination of all channels yielded an excess of events above the expected background
corresponding to a local significance of 5.0�. As of the date of this thesis, latest
results found the mass of the new boson to be mH = 125.9 ± 0.4GeV [8]. Since
an excess occurred in the di-photon channel, the particle is most likely uncharged.
Considering the Landau-Yang theorem [15, 16], i.e. the theoretical rationale that a
spin-1 particle cannot decay into two photons, the new boson is either a scalar spin-0
or a tensor spin-2 particle. Even though measurements already hint a spin-parity of
JP = 0+ in agreement with SM predictions [17], a final unambiguous proof is still
yet to be supplied.

2In fact, neutrinos were observed to have oscillating weak eigenstates requiring finite neutrino
masses. However, this is not yet included in the SM.
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the ATLAS and the CMS collaborations. Consequently, details about its production
and decay characteristics in proton-proton colliders are given.

2.3.1 Higgs Boson Properties

In a seminar on 4 July 2012, both, the ATLAS and the CMS collaboration presented
preliminary results of the search for the Higgs boson. They announced the observa-
tion of a new boson with a mass between 125 and 126GeV that is consistent with
the Higgs boson as predicted by the SM. Figure 2.2 shows the invariant di-photon
mass spectrum for a combined measurement with an integrated luminosity of L =
5.1 fb�1 at a center-of-mass energy of 7TeV and L = 5.3 fb�1 at 8TeV. The com-
bination of all channels yielded an excess of events above the expected background
corresponding to a local significance of 5.0�. As of the date of this thesis, latest
results found the mass of the new boson to be mH = 125.9 ± 0.4GeV [8]. Since
an excess occurred in the di-photon channel, the particle is most likely uncharged.
Considering the Landau-Yang theorem [15, 16], i.e. the theoretical rationale that a
spin-1 particle cannot decay into two photons, the new boson is either a scalar spin-0
or a tensor spin-2 particle. Even though measurements already hint a spin-parity of
JP = 0+ in agreement with SM predictions [17], a final unambiguous proof is still
yet to be supplied.

2In fact, neutrinos were observed to have oscillating weak eigenstates requiring finite neutrino
masses. However, this is not yet included in the SM.
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