EFT probes of new physics @LHC
 Joan Elias Miró

EPS Conference on High Energy Physics 2017 - Venezia

LHC is performing great...

March 2017	CMS Preliminary	
CMS measurements vs. NNLO (nLo) theory	7 TeV CMS measurement (stat,stat+sys) 8 TeV CMS measurement (stat,stat+sys) 13 TeV CMS measurement (stat,stat+sys)	
γ	$1.06 \pm 0.01 \pm 0.12$	$5.0 \mathrm{fb}^{-1}$
$\mathrm{W} \gamma$, (nLO th.)	$1.16 \pm 0.03 \pm 0.13$	$5.0 \mathrm{fb}^{-1}$
$\mathrm{Z} \gamma$, (NLO th.)	$0.98 \pm 0.01 \pm 0.05$	$5.0 \mathrm{fb}^{-1}$
$\mathrm{Z} \gamma$, (NLO th.)	$0.98 \pm 0.01 \pm 0.05$	$19.5 \mathrm{fb}^{-1}$
WW+WZ	$1.01 \pm 0.13 \pm 0.14$	$4.9 \mathrm{fb}^{-1}$
WW	$1.07 \pm 0.04 \pm 0.09$	$4.9 \mathrm{fb}^{-1}$
WW	$1.00 \pm 0.02 \pm 0.08$	$19.4 \mathrm{fb}^{-1}$
WW	$0.96 \pm 0.05 \pm 0.08$	$2.3 \mathrm{fb}^{-1}$
WZ	$1.05 \pm 0.07 \pm 0.06$	$4.9 \mathrm{fb}^{-1}$
WZ	$1.02 \pm 0.04 \pm 0.07$	$19.6 \mathrm{fb}^{-1}$
WZ	$0.80 \pm 0.06 \pm 0.07$	$2.3 \mathrm{fb}^{-1}$
ZZ	$0.97 \pm 0.13 \pm 0.07$	$4.9 \mathrm{fb}^{-1}$
ZZ	$0.97 \pm 0.06 \pm 0.08$	$19.6 \mathrm{fb}^{-1}$
ZZ	$1.10 \pm 0.04 \pm 0.05$	$35.9 \mathrm{fb}^{-1}$
All results at: ://cern.ch/go/pNj7	Section Ratio:	$\sigma_{\exp } / \sigma_{\text {theo }}{ }^{2}$

We should understand the consequences of that

Two complementary avenues towards achieving this goal:
a) Model building - paradigm change.
b) Detailed understanding of the real pressure - the LHC legacy.

We strost understand the consequences of that

Two complementary avenues towards achieving this goal:
a) Model building — paradigm change.
b) Detailed understanding of the real pressure - the LHC legacy.
this talk

LHC searches suggest that there is a separation between the EW scale and the scale of new physics Λ.

$$
\frac{M_{W}^{2}}{\Lambda^{2}} \ll 1
$$

EFT approach is convenient to organize the lessons we learn from LHC.

The prevailing point of view is that the SM is an EFT - as any other theory of nature discovered so far.

$$
\begin{aligned}
\mathcal{L}_{\text {nature }}^{E<T e V}= & \overbrace{\mathcal{L}_{\mathrm{SM}}^{\text {dim } \leq 4}}^{\checkmark}+\frac{c}{\Lambda} \overbrace{\tilde{H}^{T} \Psi_{L} \bar{\Psi}^{*} H}^{\text {dim. five }}+ \\
& +\frac{1}{\Lambda^{2}} \overbrace{\left(c_{1} \bar{\psi}_{L} F_{\mu \nu} \psi_{R} H+c_{2}|H|^{2} W_{\mu \nu} W^{\mu \nu}+\cdots\right)}^{\text {dimension six } ?} \\
& +\frac{1}{\Lambda^{4}} \overbrace{\left(c_{3} \psi_{L} \gamma^{\mu} \psi_{L} D^{\mu} W_{\tau \sigma} W^{\tau \sigma}+\cdots\right)}^{\text {dimension eight. } ?} \\
& +\ldots
\end{aligned}
$$

Any heavy particle of mass $m>g_{N P} \Lambda$ is integrated out.

The prevailing point of view is that the SM is an EFT - as any other theory of nature discovered so far.

For instance, integrating a second heavy Higgs doublet

Any he
gives a four fermion, among other ops.

The prevailing point of view is that the SM is an EFT - as any other theory of nature discovered so far.

$$
\begin{aligned}
\mathcal{L}_{\text {nature }}^{E<T e V}= & \overbrace{\mathcal{L}_{\mathrm{SM}}^{\operatorname{dim} \leq 4}+\frac{c}{\Lambda} \overbrace{\tilde{H}^{T} \Psi_{L} \bar{\Psi}^{*} H}^{\text {dim. five }}+}^{\text {dimension six } ?} \\
& +\frac{1}{\Lambda^{2}} \overbrace{\left(c_{1} \bar{\psi}_{L} F_{\mu \nu} \psi_{R} H+c_{2}|H|^{2} W_{\mu \nu} W^{\mu \nu}+\cdots\right)}^{\text {dim }} \\
& +\frac{1}{\Lambda^{4}} \overbrace{\left(c_{3} \psi_{L} \gamma^{\mu} \psi_{L} D^{\mu} W_{\tau \sigma} W^{\tau \sigma}+\cdots\right)}^{\text {dimension eight. ? }} \\
& +\ldots
\end{aligned}
$$

Any heavy particle of mass $m>g_{N P} \Lambda$ is integrated out.

$$
\sigma \sim S M^{2}+\frac{S M \times B S M_{6}}{\Lambda^{2}}+\frac{B S M_{6}^{2}}{\Lambda^{4}}+\frac{S M \times B S M_{8}}{\Lambda^{4}}+\cdots
$$

What does the EFT approach buys for us? - SM EFT philosophy

* Consistent framework for the parametrization of BSMs.
* Deformation of the SM in a way where the assumptions taken tend to be clear ("model independence").
* With suitable parameterizations one can learn about broad classes of models (e.g. SILH, univ. BSM, MFV, ...).
* The $\operatorname{dim}>4$ operators connect further physics that are otherwise more independent (e.g. learn Higgs physics from LEP measurements, information about TGC from
 Higgs measurements, etc.).

Plan of the talk:

I will exemplify many aspect of the use of EFT in the context of Higgs physics, Triple Gauge Couplings and the LHC.

Triple gauge couplings, what do we know?

In the SM, there is a single TGC which can be breakdown as
$\mathcal{L}_{T G C}=i g\left(W^{+\mu \nu} W_{\mu}^{-} W_{\nu}^{3}+W_{3}^{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right) \sim \partial W W W$
where $W_{\mu}^{3}=c_{\theta} Z_{\mu}+s_{\theta} A_{\mu}$

Triple gauge couplings, what do we know?

In the SM, there is a single TGC which can be breakdown as
$\mathcal{L}_{T G C}=i g\left(W^{+\mu \nu} W_{\mu}^{-} W_{\nu}^{3}+W_{3}^{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right) \sim \partial W W W$
where $W_{\mu}^{3}=c_{\theta} Z_{\mu}+s_{\theta} A_{\mu}$

Beyond the SM, what ops. can we write at $d=6$ level? (weak coupling) Only two type of CP even interactions are possible:
$\mathcal{L}_{a T G C} \sim v^{2} \partial W W W+\partial W \partial W \partial W$

Triple gauge couplings, what do we know?

In the SM, there is a single TGC which can be breakdown as
$\mathcal{L}_{T G C}=i g\left(W^{+\mu \nu} W_{\mu}^{-} W_{\nu}^{3}+W_{3}^{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right) \sim \partial W W W$
where $W_{\mu}^{3}=c_{\theta} Z_{\mu}+s_{\theta} A_{\mu}$

Beyond the SM, what ops. can we write at $d=6$ level? (weak coupling) Only two type of CP even interactions are possible:
$\mathcal{L}_{a T G C} \sim v^{2} \partial W W W+\partial W \partial W \partial W$
2.- Different momentum and helicity interaction
1.- Deformation of existing TGC

a(nomalous)TGC of the ist kind

$$
\begin{aligned}
\mathcal{L}_{T G C} & =i g W^{+\mu \nu} W_{\mu}^{-}\left(c_{\theta} Z_{\nu}+s_{\theta} A_{\nu}\right)+i g\left(c_{\theta} Z^{\mu \nu}+s_{\theta} A^{\mu \nu}\right) W_{\mu}^{+} W_{\nu}^{-} \\
& \downarrow \\
\mathcal{L}_{a T G C}^{1 s t} & =i g W^{+\mu \nu} W_{\mu}^{-}\left(c_{\theta} \delta g_{1, z} Z_{\nu}+s_{\theta} \delta g_{1, \gamma} A_{\nu}\right)+i g\left(c_{\theta} \delta \kappa_{z} Z^{\mu \nu}+s_{\theta} \delta \kappa_{\gamma} A^{\mu \nu}\right) W_{\mu}^{+} W_{\nu}^{-}
\end{aligned}
$$

a(nomalous)TGC of the 1st kind

$$
\begin{aligned}
\mathcal{L}_{T G C} & =i g W^{+\mu \nu} W_{\mu}^{-}\left(c_{\theta} Z_{\nu}+s_{\theta} A_{\nu}\right)+i g\left(c_{\theta} Z^{\mu \nu}+s_{\theta} A^{\mu \nu}\right) W_{\mu}^{+} W_{\nu}^{-} \\
& \downarrow \\
\mathcal{L}_{a T G C}^{1 s t} & =i g W^{+\mu \nu} W_{\mu}^{-}\left(c_{\theta} \delta g_{1, z} Z_{\nu}+s_{\theta} \delta g A_{\nu}\right)+i g\left(c_{\theta} \delta \kappa_{z} Z^{\mu \nu}+s_{\theta} \delta \kappa_{\gamma} A^{\mu \nu}\right) W_{\mu}^{+} W_{\nu}^{-}
\end{aligned}
$$

At d=6 level, gauge invariance implies $\delta \kappa_{z}=\delta g_{1, z}-s_{\theta}^{2} / c_{\theta}^{2} \delta \kappa_{\gamma}$

a(nomalous)TGC of the 1st kind

$$
\begin{aligned}
\mathcal{L}_{T G C} & =i g W^{+\mu \nu} W_{\mu}^{-}\left(c_{\theta} Z_{\nu}+s_{\theta} A_{\nu}\right)+i g\left(c_{\theta} Z^{\mu \nu}+s_{\theta} A^{\mu \nu}\right) W_{\mu}^{+} W_{\nu}^{-} \\
& \downarrow \\
\mathcal{L}_{a T G C}^{1 s t} & =i g W^{+\mu \nu} W_{\mu}^{-}\left(c_{\theta} \delta g_{1, z} Z_{\nu}+s_{\theta} \delta g>A_{\nu}\right)+i g\left(c_{\theta} \delta \kappa_{z} Z^{\mu \nu}+s_{\theta} \delta \kappa_{\gamma} A^{\mu \nu}\right) W_{\mu}^{+} W_{\nu}^{-}
\end{aligned}
$$

At $\mathrm{d}=6$ level, gauge invariance implies $\delta \kappa_{z}=\delta g_{1, z}-s_{\theta}^{2} / c_{\theta}^{2} \delta \kappa_{\gamma}$

aTGC of the 2nd kind

$$
\mathcal{L}_{a T G C}^{2 n d}=\lambda_{z} \frac{i g}{m_{W}^{2}} W_{\mu_{1}}^{+\mu_{2}} W_{\mu_{2}}^{-\mu_{3}} W_{\mu_{3}}^{3 \mu_{1}}
$$

All in all, we have 3 CP-even aTGC $\delta g_{1, z}, \delta \kappa_{\gamma}, \lambda_{z}$

$$
\begin{aligned}
\delta g_{1, z} & =-0.016_{-.020}^{+.018} \\
\delta \kappa_{\gamma} & =-0.018 \pm 0.042 \\
\lambda_{z} & =-0.022 \pm 0.019
\end{aligned}
$$

* Derived from diboson production.
* Fixed collision energy.
* EFT interpretation is straightforward.

One can perform a global analysis of *all* SM dim6 operators.

After constraints from W/Z pole observables only 3 parameters to describe possible deviations of diboson production $\delta g_{1, z}, \delta \kappa_{\gamma}, \lambda_{z}$

These are matched into 4 unconstrained Wilson coefficients.
$3<4 \Rightarrow$ flat direction - can be lifted with Higgs physics data.

Famous LEP-II \% measurements

$$
\begin{aligned}
\delta g_{1, z} & =-0.016_{-.020}^{+.018} \\
\delta \kappa_{\gamma} & =-0.018 \pm 0.042 \\
\lambda_{z} & =-0.022 \pm 0.019
\end{aligned}
$$

* Derived from diboson production.
* Fixed collision energy.
* EFT interpretation is straightforward.

Fit revisited in 1405.1617, 1411.0669
One can perform a global art

After constraints from W/Z pc
to describe possible deviati

These are matched into 4 un
Working linearly $w /$ the aTGC the constraints are $\mathrm{O}(10)$ weaker due to a flat direction $\delta g_{1, z} \approx-\lambda$.
Thus strong sensitivity to quadratic terms - EFT : ? ?

Can be "lifted" by considering:

* Higgs observables - it bounds $g_{1, z}$
* other diboson c.m. energy $-\lambda_{z}$ dep. scales different

TGC, diboson, EFT and the LHC

CMS [1703.06095]

In summary, our limits are consistent with the SM prediction and improve upon the sensitivity of the fully leptonic 8 TeV results [6, 7] and the combined LEP experiments [37, 42].

Figure 3: The 68 and 95% CL observed and expected exclusion contours in \triangle NLL are depicted for three pairwise combinations of the aTGC parameters in the LEP parametrization (top) and in the EFT formulation (bottom). The black dot represents the best fit point.

LHC has surpassed the precision of LEP on TGC, but which theories are this bounds proving?

Most of its sensitivity comes from the tails, where the EFT description can break.

Most of its sensitivity comes from the tails, where the EFT description can break.

EFT with smaller cutoff may apply

Large cutoff, implies sensitivity to large coupling

To prove less exotic theories we need better sensitivity

Two effects we may worry about the EFT measurement:

* Leakage of high invariant mass events
* Strong sensitivity to quadratic terms vs linear ones.

Looking at low categories only, LEP bounds are still stronger.

An obstruction to precision

$$
\sigma \sim S M^{2}+\frac{S M \times B S M_{6}}{\Lambda^{2}}+\frac{B S M_{6}^{2}}{\Lambda^{4}}+\frac{S M \times B S M_{8}}{\Lambda^{4}}+\cdots
$$

Helicity selection rules. In some cases the interference term vanishes, at tree-level. Which ops. can interfere?

Two groups of dim6 operators

1) "Current-current ops.":

Those that can be resolved by the tree-level exchange of a spin $s \leq 1$ resonance.
2) "Loop ops.":

Those that can't be resolved by the tree-level exchange of a spin $s \leq 1$ resonance.

An obstruction to precision

$$
\sigma \sim S M^{2}+\frac{S M \times B S M_{6}}{\Lambda^{2}}+\frac{B S M_{6}^{2}}{\Lambda^{4}}+\frac{S M \times B S M_{8}}{\Lambda^{4}}+\cdots
$$

Helicity selection rules. In some cases the interference term vanishes, at tree-level. Which ops. can interfere?

Two groups of dim6 operators

1) "Current-current ops.":

Those that can be resolved by the tree-level exchange of a spin $s \leq 1$ resonance.
\Rightarrow they can mediate processes with same helicity configuration as in the SM.
2) "Loop ops.":

Those that can't be resolved by the tree-level exchange of a spin $s \leq 1$ resonance.
\Rightarrow require case by case analysis. (maybe can be classified with susy? spurion vev sucks helicity of the process and that's why some of them lead to MHV amplitudes...)
$W^{3}{ }_{\mu \nu}$ is of the second group.
Dixon, Shadmi [9312363]

It turns out that $\mathrm{W}^{3}{ }_{\mu \nu}$ does not lead to 2->2 amplitudes with same helicity as in the $\mathrm{SM} \Rightarrow$ thus interference vanishes.

We want to prove this term

* In general $\quad \sigma=\sigma_{\mathrm{SM}}+\sigma_{\mathrm{int}} c+\sigma_{\mathrm{BMS}^{2}} c^{2}$
diboson measurements sensitive to this function
* We can look at the parameter

$$
\delta=\frac{\sigma_{\mathrm{int}}}{\sigma_{S M}} \times \frac{\sigma_{\mathrm{int}}}{\sigma_{\mathrm{BMS}^{2}}}
$$

* For the deviations of the SM cross sections less than $\Delta \sigma_{\text {obs }} \leq \delta \times \sigma_{\text {SM }}$ we are still dominated by the interference term.
\Rightarrow We should design searches that maximize δ
* Sensitive to λ_{z} interference.

* Requiring extra hard jet helps in interference!

$m_{W Z}^{\top} \rightarrow$

CL obtained integrating over lower bin categories.

LHC @14TeV
pTj: veto <50, [50,100], [100,300], [300,500], >500
mwzT: [100,200], ..., [900,1000], [1000,1200], [1200, 1500], [1500,2000], [2000,2500], >2500

$m_{\mathrm{WZ}}^{\top} \rightarrow$

CL obtained integrating over lower bin categories.

LHC @14TeV
pTj: veto <50, [50,100], [100,300], [300,500], >500
mwzT: [100,200], ..., [900, 1000], [1000,1200], [1200, 1500], [1500,2000], [2000,2500], >2500

2nd solution binning on azimuthal angles of the decay products

- Gives a better handle on the interference amplitude.
- Energy growth is recovered.
- Sensitivity to the sign of the Wilson coefficient

Azatov, EM, Reyimuaji, Venturini

- Gives a better handle qualitatively different: with this binning
- Energy growth is recov
- Sensitivity to the sign we access the sign and regime of EFT validity is larger.

Summary

* At LHC we must be careful with EFT interpretation.
* Analysis of aTGC. The main motivation is bottom up, better sensitivity to NP from diboson measurement.
* Larger sensitivity to interference term is more EFT save:
less dependence on quadratic terms and dim8 ops - field redefinitions of $O\left(1 / \wedge^{2}\right)$ differ at $O\left(1 / \wedge^{4}\right)$.
* We gain sensitivity for λ_{z} by
- looking at 2->3 process instead of 2->2.
- binning on azimuthal angles of decay products.

Example

