CMS Measurements of the Top Quark Mass and Width

Enrique Palencia Cortezón

(on behalf of the CMS Collaboration)

Universidad de Oviedo

- Summary RunI Measurements
- 13 TeV measurements
- Alternative methods
- Top Width

EPS-HEP2017: EPS Conference on High Energy Physics

July 7, 2017

Top Mass: Motivation

- Fundamental parameter of the SM
- m_{top} can be measured directly from the decay products (top quark decays well before hadronizing)
- m_{top} is close to the EWSB scale, so top quark might play a special role
- Precise knowledge of m_{top} crucial for testing the consistency of the SM: participates in quantum loop radiative corrections to m_w constraining m_H
- **a** m_{top} related with m_{H} and vacuum stability of SM

Top Mass: Runl Measurements (7 and 8 TeV)

PRD 93 (2016) 072004

- All decay channels are pursued
 provides consistency and precision
- Lepton+Jets and All Jets channels
 in situ determination of jet energy scale factor (JSF)
 - similar systematic uncertainties
- Dilepton channel
 - Different color flow
 - Different main systematics:
 - b-fragmentation and QCD modeling

Enrique Palencia (Oviedo) Top Mass and Width at CMS – EPS-HEP 2017 July 7, 2017

Top Mass: Measurements @ 8 TeV

Enrique Palencia (Oviedo)

Top Mass and Width at CMS – EPS-HEP 2017

First Measurement @ 13 TeV

Follows the 8 TeV measurement using µ+jets events

Main systematics: JES and MC modeling

Still not as precise as Run I measurement new generators used in Run II still being

tested/tuned (see details in E. Yazgan's talk)

But in excellent agreement with other measurements

Top Mass: Current Status

- World combination reaching a precision of 0.5 GeV (<0.3%)</p>
 - arXiv:1403.4427
- Precision limited by understanding of hadronization modeling
- Different ways to improve
- Use cleaner observables
 - Avoid jets
- Use theoretically calculable observables sensitive to the mass
 - σ(tt), m(lb)
- Constrain modeling systematics

Enrique Palencia (Oviedo) Top Ma

Top Mass and Width at CMS – EPS-HEP 2017

Lepton + J/Ψ Events or Secondary Vertex @ 8 TeV

Enrique Palencia (Oviedo)

Top Mass and Width at CMS – EPS-HEP 2017

July 7, 2017

Top Mass from Leptonic Observables @ 8 TeV

Dilepton channel

Enrique Palencia (Oviedo) Top Mass and Width at CMS – EPS-HEP 2017 July 7, 2017

Top Mass from Single Top (t-channel) @ 8 TeV

Top Mass: Combination Alternative Measurements

- Only few alternative methods shown here
 Others are available
- All measurements combined using BLUE
 - 0.4% precision, comparable with the combination of standard methods
 - Similar exp. unc. but larger theoretical
- When combining with standard methods not large improvement due to correlations between the main syst. uncertainty
- How to increase the impact

Enrique Palencia (Oviedo)

- Decrease the size of the correlations using less sensitive techniques
- Decrease the size of the correlated terms data-based constraints

Top Pole Mass

[dd]

- e[™] Extract m_{top} from production cross section
- Calculate mass dependence at NNLO

JHEP 08 (2016) 029

1% precision, not yet competitive with direct measurements

pole

PDF set: NNPDF3.0 (consistent results with CT14 and MMHT2014)

- Could reach 0.5% precision with 5% and 2% theory and experimental unc., respectively (CMS-PAS-FTR-16-006).
- Main systematics: PDF, luminosity
- 13 TeV I+jets x-sect measurement (details in T. Arndt's talk) yields 170.6 ± 2.7 GeV (using CT14 PDF)

July 7, 2017

11/17

Top Mass and Width at CMS – EPS-HEP 2017

Top Width

- Less tested of the top quark properties! CMS-PAS-TOP-16-019
- **Dilepton channel**
- Reconstructed mass of the decay products (lepton and b) is used as observable to probe variations in Γ_{1}
- Observable compared to the simulated expectations for different Γ_{1} scenarios using a likelihood technique
- MC modeling main systematic uncertainty

- For a SM-like top quark hypothesis:
- **a** Observed limit: 0.6 ≤ Γ_1 ≤ 2.5 GeV, expected limit: $0.6 \le \Gamma_1 \le 2.4 \text{ GeV}$
- **a** Γ_t (NLO) = 1.35 GeV
- Indirect measurement Phys. Lett. B 736 (2014) 33

Γ₊ = 1.36 ± 0.02 (stat) +0.14-0.11 (syst)

Enrique Palencia (Oviedo)

Top Mass and Width at CMS – EPS-HEP 2017

July 7, 2017

Summary

- In Run I, CMS measured m_{top} in all decay channels with different complementary methods. The combination produced the most precise measurement to date
- Level of precision reached in m_{top} (<0.3%) impressive but comes from many years of continuous improvements</p>
- Combination of alternative methods yields similar precision as standard methods
- First measurement at 13 TeV already available
- Outlook: ultimate precision of 0(10²) MeV
 0.5
 expected when merging measurements and
 0
 experiments, accounting for correlations, and
 CMS-PA
 improving the MC modeling

The first direct bounds on Γ_t at the LHC has been achieved
Most precise performed to date

Enrique Palencia (Oviedo) Top Mass and Width at CMS – EPS-HEP 2017

July 7, 2017

Thank you

for your

attention!

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/MASS.html

14/17

Enrique Palencia (Oviedo) Top Mass and Width at CMS – EPS-HEP 2017 July 7, 2017

Back-up

Slides

Enrique Palencia (Oviedo)Top Mass and Width at CMS – EPS-HEP 2017July 7, 2017

Lepton(s) + J/Ψ Events @ 8 TeV

Enrique Palencia (Oviedo)

Top Mass and Width at CMS – EPS-HEP 2017

July 7, 2017

Lepton + Secondary Vertices @ 8 TeV

Pul

GeV

Events

- More general version of J/ψ analysis
- Sensitivity to $m_{_{top}}$ from leptons (e/µ) and via decay lengths of charged hadrons (from b-quark decay)
 - Stronger sensitivity to m_{ton} without inclusion of jets
- Semileptonic and dileptonic channels
- Invariant mass of lepton and secondary vertex used

as observable (in bins of SV--track multiplicity)

- Experimental uncertainties <500 MeV
- Dominant systematic: top quark p_{τ} and b-quark fragmentation

17/17

Enrique Palencia (Oviedo) Top Mass and Width at CMS – EPS-HEP 2017 July 7, 2017