CMS Measurements of the Top Quark Mass and Width

Enrique Palencia Cortezón
(on behalf of the CMS Collaboration)

Universidad de Oviedo

Outline
- Summary RunI Measurements
- 13 TeV measurements
- Alternative methods
- Top Width

EPS-HEP2017:
EPS Conference on High Energy Physics

July 7, 2017
Top Mass: Motivation

- Fundamental parameter of the SM

- m_{top} can be measured directly from the decay products (top quark decays well before hadronizing)

- m_{top} is close to the EWSB scale, so top quark might play a special role

- Precise knowledge of m_{top} crucial for testing the consistency of the SM:
 - participates in quantum loop radiative corrections to m_W constraining m_H
 - m_{top} related with m_H and vacuum stability of SM
All decay channels are pursued
- provides consistency and precision

Lepton+Jets and All Jets channels
- in situ determination of jet energy scale factor (JSF)
- similar systematic uncertainties

Dilepton channel
- Different color flow
- Different main systematics:
 - b-fragmentation and QCD modeling

Top Mass: RunI Measurements (7 and 8 TeV)

- CMS 2010, dilepton
 - JHEP 07 (2011) 049, 36 pb$^{-1}$
 - $175.50 \pm 4.60 \pm 4.60$ GeV (value ± stat ± syst)

- CMS 2011, dilepton
 - EPJC 72 (2012) 2202, 5.0 fb$^{-1}$
 - $172.50 \pm 0.43 \pm 1.43$ GeV (value ± stat ± syst)

- CMS 2011, all-jets
 - EPJC 74 (2014) 2758, 3.5 fb$^{-1}$
 - $173.49 \pm 0.69 \pm 1.21$ GeV (value ± stat ± syst)

- CMS 2011, lepton+jets
 - JHEP 12 (2012) 105, 5.0 fb$^{-1}$
 - $173.49 \pm 0.43 \pm 0.98$ GeV (value ± stat ± syst)

- CMS 2012, dilepton
 - This analysis, 19.7 fb$^{-1}$
 - $172.82 \pm 0.19 \pm 1.22$ GeV (value ± stat ± syst)

- CMS 2012, all-jets
 - This analysis, 18.2 fb$^{-1}$
 - $172.32 \pm 0.25 \pm 0.59$ GeV (value ± stat ± syst)

- CMS 2012, lepton+jets
 - This analysis, 19.7 fb$^{-1}$
 - $172.35 \pm 0.16 \pm 0.48$ GeV (value ± stat ± syst)

- CMS combination
 - $172.44 \pm 0.13 \pm 0.47$ GeV (value ± stat ± syst)

- Tevatron combination (2014)
 - arXiv:1407.2682
 - $174.34 \pm 0.37 \pm 0.52$ GeV (value ± stat ± syst)

- World combination 2014
 - ATLAS, CDF, CMS, D0
 - arXiv:1403.4427
 - $173.34 \pm 0.27 \pm 0.71$ GeV (value ± stat ± syst)

Top Mass: Measurements @ 8 TeV

- **l+jets and all jets**: fit of the decay products to a $t\bar{t}$ hypothesis and joint maximum likelihood to estimate m_{top} and JSF

- **Dilepton**: matrix weighting technique combined with an analytical algorithm to find solutions of the kinematic equations

- **Most precise measurements in each of the decay channels**

Most precise measurements in each of the decay channels

- Combination: $\frac{\delta m_{\text{top}}}{m_{\text{top}}} = 0.28\%$

- 0.44% for 2014 world combination

PRD 93 (2016) 072004
Follows the 8 TeV measurement using μ+jets events

Main systematics: JES and MC modeling

- CDF, lepton+jets
 - PRL 109 (2012) 152003, 8.7 fb$^{-1}$
 - $m_t = 172.85 \pm 1.10$ GeV

- D0 matrix element, lepton+jets
 - PRD 91 (2015) 112003, 9.7 fb$^{-1}$
 - $m_t = 174.98 \pm 0.76$ GeV

- ATLAS 2011, lepton+jets
 - EPJC 75 (2015) 330, 4.6 fb$^{-1}$
 - $m_t = 172.33 \pm 1.27$ GeV

- CMS 2011, lepton+jets
 - JHEP 12 (2012) 105, 5.0 fb$^{-1}$
 - $m_t = 173.49 \pm 1.07$ GeV

- CMS 2012, lepton+jets
 - PRD 93 (2016) 072004, 19.7 fb$^{-1}$
 - $m_t = 172.35 \pm 0.51$ GeV

- **CMS 2015 prel., lepton+jets**
 - TOP-16-022 (2017), 2.2 fb$^{-1}$
 - $m_t = 172.62 \pm 0.80$ GeV

- CMS Run 1 combination
 - PRD 93 (2016) 072004
 - $m_t = 172.44 \pm 0.49$ GeV

- World combination
 - ATLAS, CDF, CMS, D0
 - $m_t = 173.34 \pm 0.76$ GeV

Still not as precise as Run I measurement

- new generators used in Run II still being tested/tuned (see details in E. Yazgan's talk)

But in excellent agreement with other measurements
World combination reaching a precision of 0.5 GeV (<0.3%)

- arXiv:1403.4427

Precision limited by understanding of hadronization modeling

Different ways to improve

- Use cleaner observables
- Avoid jets

- Use theoretically calculable observables sensitive to the mass $\sigma(tt)$, $m(llb)$

Constrain modeling systematics

Top Mass: Current Status

- World combination reaching a precision of 0.5 GeV (<0.3%)
 - arXiv:1403.4427

- Precision limited by understanding of hadronization modeling

- Different ways to improve
 - Use cleaner observables
 - Avoid jets
 - Use theoretically calculable observables sensitive to the mass $\sigma(tt)$, $m(llb)$
 - Constrain modeling systematics

ATLAS+CMS Preliminary LHCTopWG

<table>
<thead>
<tr>
<th>Experiment</th>
<th>m$_{top}$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS, $l+jets$ (*)</td>
<td>172.33 ± 1.27 (0.75 ± 1.02) GeV</td>
<td>7 TeV [8]</td>
</tr>
<tr>
<td>ATLAS, dilepton (*)</td>
<td>173.79 ± 1.41 (0.54 ± 1.30) GeV</td>
<td>7 TeV [8]</td>
</tr>
<tr>
<td>CMS, $l+jets$</td>
<td>175.1 ± 1.8 (1.4 ± 1.2) GeV</td>
<td>7 TeV [9]</td>
</tr>
<tr>
<td>CMS, single top</td>
<td>172.2 ± 2.1 (0.7 ± 2.0) GeV</td>
<td>8 TeV [10]</td>
</tr>
<tr>
<td>CMS, dilepton</td>
<td>172.99 ± 0.85 (0.41 ± 0.74) GeV</td>
<td>8 TeV [11]</td>
</tr>
<tr>
<td>CMS, all jets</td>
<td>173.72 ± 1.15 (0.55 ± 1.01) GeV</td>
<td>8 TeV [12]</td>
</tr>
<tr>
<td>ATLAS comb. (June 2016)</td>
<td>172.84 ± 0.70 (0.34 ± 0.61) GeV</td>
<td>7+8 TeV [11]</td>
</tr>
<tr>
<td>CMS, $l+jets$, dil.</td>
<td>172.35 ± 0.51 (0.16 ± 0.48) GeV</td>
<td>8 TeV [13]</td>
</tr>
<tr>
<td>CMS, dilepton</td>
<td>172.82 ± 1.23 (0.19 ± 1.22) GeV</td>
<td>8 TeV [13]</td>
</tr>
<tr>
<td>CMS, all jets</td>
<td>172.32 ± 0.64 (0.25 ± 0.59) GeV</td>
<td>8 TeV [13]</td>
</tr>
<tr>
<td>CMS, single top</td>
<td>172.95 ± 1.22 (0.77 ± 0.95) GeV</td>
<td>8 TeV [14]</td>
</tr>
<tr>
<td>CMS comb. (Sep 2015)</td>
<td>172.44 ± 0.48 (0.13 ± 0.47) GeV</td>
<td>7+8 TeV [13]</td>
</tr>
</tbody>
</table>

(*) Superseded by results shown below the line

| m$_{top}$ [GeV] | Ref.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
</tr>
</tbody>
</table>
Lepton + J/ψ Events or Secondary Vertex @ 8 TeV

- Extract m_{top} from the invariant mass of J/ψ + lepton
- Events in the main leptonic top quark decay where the b-quark decays via $b \rightarrow J/\psi + X \rightarrow \mu^+\mu^- + X$
- Statistically limited (for now): 3.0 GeV
- But no use of jets: syst. unc. < 1 GeV
- Limited by top p_T modeling, QCD scales

More general version of J/ψ analysis
- Invariant mass of lepton and secondary vertex used as observable (in bins of SV track multiplicity)
- Gain in statistics but limited by fragmentation

$\begin{align*}
\text{Extract } m_{\text{top}} \text{ from the invariant mass of J/ψ + lepton} \\
\text{Events in the main leptonic top quark decay where the b-quark decays via } b \rightarrow J/\psi + X \rightarrow \mu^+\mu^- + X \\
\text{Statistically limited (for now): } 3.0 \text{ GeV} \\
\text{But no use of jets: syst. unc. } < 1 \text{ GeV} \\
\text{Limited by top } p_T \text{ modeling, } QCD \text{ scales} \\
\end{align*}$
Dilepton channel

The transverse momentum of the lepton pair from the decay of the top quark pair is chosen to extract the top quark mass.

Clean but overwhelmed by μ_R, μ_F scale unc.

Based on LO Madgraph (Run I MC)

Expected to improve using NLO+PS

After the calibration with simulated events

$$m_t = 171.7 \pm 1.1 \text{ (stat.)} \pm 0.5 \text{ (exp.)} \pm 2.5 \text{ (th.)} \pm 0.8 \text{ (}$p_T(\text{t})$)$ \text{ GeV}$

Signal modeling is the dominant systematic uncertainty.
Analyses targeting alternative topologies can give further insights, e.g. pure EW production.

Single top t-channel

Fit to the reconstructed m_{top} of the top candidates.

JES is the main systematic uncertainty.
Top Mass: Combination Alternative Measurements

- Only few alternative methods shown here
- Others are available
- All measurements combined using BLUE
 - 0.4% precision, comparable with the combination of standard methods
 - Similar exp. unc. but larger theoretical
- When combining with standard methods not large improvement due to correlations between the main syst. uncertainty

How to increase the impact
- Decrease the size of the correlations using less sensitive techniques
- Decrease the size of the correlated terms data-based constraints
Top Pole Mass

- Extract m_{top} from production cross section
- Calculate mass dependence at NNLO
- 1% precision, not yet competitive with direct measurements

 $$m_{t}^{\text{pole}} = 173.8^{+1.7}_{-1.8} \text{ GeV}$$

 PDF set: NNPDF3.0 (consistent results with CT14 and MMHT2014)

- Could reach 0.5% precision with 5% and 2% theory and experimental unc., respectively (CMS-PAS-FTR-16-006).

- Main systematics: PDF, luminosity

- 13 TeV l+jets x-sect measurement (details in T. Arndt's talk) yields 170.6 ± 2.7 GeV (using CT14 PDF)
Top Width

- Less tested of the top quark properties!
- Dilepton channel
- Reconstructed mass of the decay products (lepton and b) is used as observable to probe variations in Γ_t
- Observable compared to the simulated expectations for different Γ_t scenarios using a likelihood technique
- MC modeling main systematic uncertainty

For a SM-like top quark hypothesis:
- Observed limit: $0.6 \leq \Gamma_t \leq 2.5$ GeV, expected limit: $0.6 \leq \Gamma_t \leq 2.4$ GeV
- Γ_t (NLO) = 1.35 GeV

$\Gamma_t = 1.36 \pm 0.02$ (stat) $+0.14-0.11$ (syst)
Summary

In Run I, CMS measured m_{top} in all decay channels with different complementary methods. The combination produced the most precise measurement to date.

Level of precision reached in m_{top} ($<0.3\%$) impressive but comes from many years of continuous improvements.

Combination of alternative methods yields similar precision as standard methods.

First measurement at 13 TeV already available.

Outlook: ultimate precision of $0(10^2)$ MeV expected when merging measurements and experiments, accounting for correlations, and improving the MC modeling.

The first direct bounds on Γ_t at the LHC has been achieved.

Most precise performed to date.
Thank you for your attention!

Back-up

Slides
Select events in the main leptonic top quark decay where the b-quark decays via $b \rightarrow J/\psi + X \rightarrow \mu^+\mu^- + X$

Extract m_{top} from the invariant mass of $J/\psi + \text{lepton}$

Very small BR ⇒ statistically limited (for now)
- 666 events ⇒ stat. unc. of 3.0 GeV

But no use of jets to build observable
- Avoid JES/bJES
- Systematic uncertainty < 1 GeV
- Limited by top p_T modeling, QCD scales

$m_t = (173.5 \pm 3.0) \text{ GeV}$
Lepton + Secondary Vertices @ 8 TeV

- More general version of J/ψ analysis
- Sensitivity to m_{top} from leptons (e/μ) and via decay lengths of charged hadrons (from b-quark decay)
- Stronger sensitivity to m_{top} without inclusion of jets
- Semileptonic and dileptonic channels
- Invariant mass of lepton and secondary vertex used as observable (in bins of SV-track multiplicity)

![Graph showing invariant mass distribution](image)

$\mathbf{m_{t} = 173.68 \pm 0.20\,(\text{stat})^{+1.58}_{-0.97}\,(\text{syst})\, \text{GeV}}$

- Experimental uncertainties <500 MeV
- Dominant systematic: top quark p_T and b-quark fragmentation