

Andrea Castro - University of Bologna and INFN -

Measurements of the top quark properties at decay with CMS

On behalf of the CMS collaboration

Top quark precision physics

The increasing accuracy of the measurement of top properties challenges SM theory predictions

Intrinsic:

- mass
- charge
- spin & polarization

@ production:

- cross sections
- asymmetries
- spin correlations

Top quark properties

@ decay:

- widths
- branching ratios
- W helicity
- anomalous couplings
- rare decays

Any significant deviation found w.r.t. theoretical expectations would be a hint of new physics BSM (for instance SUSY, multiple Higgs, composite top)

Andrea Castro - EPS-HEP2017

Top properties @ decay

There are several measurements made by CMS so far at 7 and 8 TeV

Will discuss here only the most recent ones (2012 @ 8 TeV):

- 1) W-helicity from top decays (sensitive to Wtb vertex structure)
- 2) anomalous couplings (i.e. other than V-A Wtb)
- 3) FCNC rare decays (t→Zq, t→Hq)

1. W helicity

W-helicity fractions: defined as $F_{L,R,0}=\Gamma_{L,R,0}/\Gamma_{total}$ for left-handed, righthanded and longitudinal W polarization

Helicity angle θ^* defined as the angle between the charged lepton/down-type q and

the t, in the W rest frame

SM predictions @NNLO, m_t=172.8 GeV

PRD 81 (2010) 111503

$$F_0 = 0.687 \pm 0.005$$
, $F_L = 0.311 \pm 0.005$, $F_R = 0.0017 \pm 0.0001$

$$F_R = 0.0017 \pm 0.0001$$

θ* distributions

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8} (1 - \cos\theta^*)^2 F_{L} + \frac{3}{4} (\sin\theta^*)^2 F_{0} + \frac{3}{8} (1 + \cos\theta^*)^2 F_{R}.$$

Fit method:

- maximize a binned Poisson likelihood using the cosθ* distributions expected from the 3 helicities
- reweight each bin by a factor (one for each branch)

$$w = \frac{\frac{3}{8}F_L(1-\cos\theta_{gen}^*)^2 + \frac{3}{4}F_0\sin^2\theta_{gen} + \frac{3}{8}F_R(1+\cos\theta_{gen}^*)^2}{\frac{3}{8}F_L^{SM}(1-\cos\theta_{gen}^*)^2 + \frac{3}{4}F_0^{SM}\sin^2\theta_{gen} + \frac{3}{8}F_R^{SM}(1+\cos\theta_{gen}^*)^2}$$

where θ^*_{gen} is the helicity angle at generator level

- the separate e+jets and μ+jets measurements are combined accounting for correlations
- µ+jets events weigh more than double than e+jets events
- unitarity constraint F_L+F₀+F_R=1

tt: lepton+jets

Selection: 1 e or µ, ≥4 jets (2 b-tagged)

leptonic branch µ+jets

hadronic branch e+jets

up/down-type ambiguity ⇒ not used single top:
1 lepton+2jets

JHEP 1501 (2015) 053

Selection: 1 e or μ , 2 jets (1 b-tagged)

leptonic branch µ+jets

Andrea Castro - EPS-HEP2017

tt: lepton+jets

single top: 1 lepton+2jets

tt: lepton+jets

Channel	$F_0 \pm (\mathrm{stat}) \pm (\mathrm{syst})$	$F_L \pm (\mathrm{stat}) \pm (\mathrm{syst})$	$F_R \pm (\mathrm{stat}) \pm (\mathrm{syst})$	$\overline{ ho_{0,L}}$
e+jets	$0.705 \pm 0.013 \pm 0.037$	$0.304 \pm 0.009 \pm 0.020$	$-0.009 \pm 0.005 \pm 0.021$	-0.950
μ+jets	$0.685 \pm 0.013 \pm 0.024$	$0.328 {\pm} 0.009 {\pm} 0.014$	$-0.013 \pm 0.005 \pm 0.017$	-0.957
ℓ +jets	$0.681 \pm 0.012 \pm 0.023$	$0.323 {\pm} 0.008 {\pm} 0.014$	$-0.004 \pm 0.005 {\pm} 0.014$	-0.959

anticorrelated because of unitarity constr.

single top: 1 lepton+2jets

 $F_{\rm L} = 0.298 \pm 0.028 \, ({
m stat}) \pm 0.032 \, ({
m syst}),$ $F_{\rm 0} = 0.720 \pm 0.039 \, ({
m stat}) \pm 0.037 \, ({
m syst}),$ $F_{\rm R} = -0.018 \pm 0.019 \, ({
m stat}) \pm 0.011 \, ({
m syst}),$

 $\rho_{0,L} = -0.8$

Structure of Wtb vertex expressed as:

$$\mathcal{L}_{\mathrm{Wtb}} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\mathrm{L}} P_{\mathrm{L}} + V_{\mathrm{R}} P_{\mathrm{R}}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu \nu} q_{\nu}}{M_{\mathrm{W}}} (g_{\mathrm{L}} P_{\mathrm{L}} + g_{\mathrm{R}} P_{\mathrm{R}}) t W_{\mu}^{-} + \mathrm{h.c.},$$

Setting limits on anomalous tensor couplings (fixing V_L=1, V_R=0 as in SM):

single top: 1 lepton+2jets

2. Anomalous couplings

JHEP 1702 (2017) 028

In the SM the **Wtb** vertex has V-A structure

FCNC currents are absent at LO and suppressed by GIM mechanism at higher orders, but can be enhanced in SM extensions

Single top events with t-channel production (\rightarrow a light forward jet) are sensitive to these deviations \Rightarrow events with one μ and 2 or 3 jets (w. one b-tagged)

Signal and background are discriminated with a multijet Bayesian Neural Network The most general CP-conserving Lagrangian for the **Wtb** vertex is

$$\mathfrak{L} = \frac{g}{\sqrt{2}} \bar{\mathbf{b}} \gamma^{\mu} \left(f_{\mathrm{V}}^{\mathrm{L}} P_{\mathrm{L}} + f_{\mathrm{V}}^{\mathrm{R}} P_{\mathrm{R}} \right) \mathbf{t} \mathbf{W}_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{\mathbf{b}} \frac{\sigma^{\mu\nu} \partial_{\nu} \mathbf{W}_{\mu}^{-}}{M_{\mathrm{W}}} \left(f_{\mathrm{T}}^{\mathrm{L}} P_{\mathrm{L}} + f_{\mathrm{T}}^{\mathrm{R}} P_{\mathrm{R}} \right) \mathbf{t} + \mathrm{h.c.},$$

for the SM the form factors are: $f_{
m V}^{
m L}=V_{
m tb}, f_{
m V}^{
m R}=f_{
m T}^{
m L}=f_{
m T}^{
m R}=0.$

Limits on Wtb and FCNC anomalous couplings are derived using specific BNN's

Anomalous couplings

A specific **Wtb** BNN is trained for each coupling

In this case it's trained to separate the contribution Vector-Left from that Tensor-Left

A 2D fit of **Wtb** BNN and SM BNN gives exclusion limits

Similar exclusion limits for

- Vector-Left vs Vector-Right
- Vector-Left vs Tensor-Right

Anomalous couplings

The FCNC tcg and tug interactions can be expressed by the effective Lagrangian

$$\mathcal{L} = \frac{\kappa_{tqg}}{\Lambda} g_s \bar{q} \sigma^{\mu\nu} \frac{\lambda^a}{2} t G^a_{\mu\nu} \qquad (\Lambda \approx 1 \text{ TeV})$$

A specific BNN is trained for each coupling

 $|\kappa_{tug}|/\Lambda=0.06$ $|\kappa_{teg}|/\Lambda=0.12$

Limits on the couplings are set from the posterior prob. distr. of

Limits on couplings and branching fractions (7 + 8 TeV)

$ \kappa_{\text{tug}} /\Lambda \text{ (TeV}^{-1})$	<i>ଞ</i> (t→ug)	$ \mathbf{K}_{tcg} /\Lambda \ (TeV^{-1})$	8 (t→cg)
4.1 (4.8) ×10 ⁻³	2.0 (2.8) ×10 ⁻⁵	1.8 (1.5) ×10 ⁻²	4.1 (2.8) ×10 ⁻⁴

3. Rare decays -1

https://inspirehep.net/record/1512295

accepted by JHEP

One rare decay sought for is $t \rightarrow Zq$: BR_{SM} = O(10⁻¹⁵ ÷ 10⁻¹⁴)

In models beyond SM : BR_{BSM} \sim O(10⁻⁴) \Longrightarrow within reach

Decay can be found in the FCNC production mode $gg \rightarrow tt \rightarrow tZq \Rightarrow$

which needs to be distinguished from SM (for instance \Rightarrow)

and the suppressed FCNC production of tZ (for instance \Rightarrow)

The 3 cases produce a distinctive trilepton final state: **eee**, **eeµ**, **eµµ**, **µµµ**

(see J. Andrea's talk)

Rare decays -1

No excess found ⇒ 95% CL exclusion limits

$$\mathcal{B}(t\to Zc) < 0.049\%$$
 @ 95%CL (0.118% exp.)

$$\mathcal{B}(t \to Zu) < 0.022\%$$
 @ 95%CL (0.027% exp.)

Rare decays -2

JHEP 02 (2017) 079

Another rare decay is $t \rightarrow Hq$ ($t \rightarrow Hu$ or $t \rightarrow Hc$): BR_{SM} = O(10⁻¹⁵ ÷ 10⁻¹⁴)

In models beyond SM (like the 2HDM): $BR_{BSM} = O(10^{-5} \div 10^{-3}) \implies$ within reach!

Searched for in **tt** → **Wb Hq** events:

- with W decaying leptonically or hadronically
- with **H** decaying to 2 bosons or 2 fermions

Three independent analyses/selections which are then combined:

- 1. multilepton analysis: two SS leptons, or 3 leptons (e or μ) (for $H \rightarrow WW, ZZ, \tau\tau$)
- 2. diphoton + W (leptonic or hadronic) + btag (for $H \rightarrow \gamma \gamma$)
- 3. 3 btagged jet + leptonic **W** + additional jet (for **H**→**bb**)

1. Selection on E_Tmiss and H_T

3. NN discriminator fit

Rare decays -2

2. $M_{\gamma\gamma}$ fits

leptonic channel

(similar for the hadronic channel)

No excess found \Rightarrow

95% CL exclusion limits on BR (combined channels)

$$\mathcal{B}(t \to Hc) < 0.40\% @ 95\%CL (0.43\% exp)$$

$$\mathcal{B}(t \to Hu) < 0.55\% @ 95\%CL (0.40\% exp)$$

Andrea Castro - EPS-HEP2017

Conclusions

- LHC is a top factory which enables precision measurements which can challenge the Standard Model
- Extensions of the SM affect the Wtb vertex coupling and the top quark decay BR's
- No significant deviation found so far w.r.t. theoretical expectations ...
- ... but the search continues increasing statistics (Run 2) and attacking systematic uncertainties (see E. Yazgan's talk)

Backup

The top quark at LHC

$$pp \rightarrow t\bar{t} \rightarrow W^+bW^-\bar{b}$$

Physics objects:

- isolated energetic e or μ
- energetic jets
- b-tagged jets
- momentum imbalance (MET)

LHC is a top factory

- ≈5 million pairs per experiment in 2012, ≈30 million in 2016, each t decays ≈100% to W+b - single top EWK production ($\sigma_t \sim \sigma_{tt}/3$)

Characterized by W decays

- lepton + jets (LJ, BR(LJ)≈30%, golden channel, good yield and good S/B)
- dilepton (DIL, BR(DIL)≈5%, low yield, better S/B)
- all-jets (AJ, BR(AJ)≈45%, max yield, large bkgd)

All of them useful for completeness and with (some) uncorrelated systematics