

Top physics measurements at LHCb

Stephen Farry

on behalf of the LHCb collaboration EPS 2017, Venice July 7, 2017

LIVERSITY OF

LHCb [JINST(2008)3:S08005]

- optimised to study \mathcal{CP} Violation in B and D decays at the LHC
- fully instrumented between $2.0 \leq \eta \leq 5.0$
- excellent tracking, PID and vertexing capabilities

top quark production in pp collisions

- measurements of single-top and top-pair production in pp collisions performed by ATLAS and CMS in the central region
- experimental precision $\sim 3.5\%$
- theoretical calculations available at NNLO NNPDF3.1 NNLO, Q = 100 GeV

• $t\bar{t}$ production places constraint on gluon pdf [1706.00428 [hep-ph]]

top quarks in the forward region [JHEP(2014)02:p. 126]

MCFM-6.6, pp → tt, √s = 14 TeV 0.6 Production ratio m, = 173.25 GeV CT10wnlo $\frac{1}{2} < \frac{\mu_F}{\mu} < 2$ qq+|qg| Ratio total Scale uncertainty ---- LHCb 0.2 0.1 -4 -3 -2 -1 0 2 3 4 $\eta_{\tilde{t}}$

Why look at tops in the forward region?

- test of differential predictions
- reduced gg contribution to top production in the forward region
 - increased $t\bar{t}$ asymmetry

NNPDF2.3, α_e = 0.119

(80 GeV

40

35

- can provide constraints on gluon PDF at higher-x than central region
 - up to 20-30% reduction possible at large-x

top quarks at LHCb

- LHCb as a top factory
 - $-\checkmark$ excellent tracking and vertexing
 - -> good b-tagging performance
 - X low acceptance for heavy mass objects
 - X low instantaneous luminosity

LHCb Average Mu at 4 TeV in 2012

- partial reconstruction attractive to achieve high statistics
 - large backgrounds expected
- 1. Heavy Flavour Tagging Identification of beauty and charm quark jets at LHCb [JINST(2015)10:P06013]
- 2. Top in the μb final state First observation of top quark production in the forward region [Phys. Rev. Lett. (2015)115:p. 112001]
- 3. Top in the ℓbb final state Measurement of forward $t\bar{t}$, $W + b\bar{b}$ and $W + c\bar{c}$ production in pp collisions at $\sqrt{s} = 8$ TeV [Phys. Lett.(2017)B767:pp. 110–120]

(all studies so far with Run-I data)

jets and tagging at LHCb [JINST(2015)10:P06013]

- jets reconstructed using anti- $k_{\rm T}$ algorithm and R=0.5
- \bullet tagging performed using inclusive b and $c\mbox{-jet}$ tagger
- reconstruct 2-body vertices in event
- merge into n-body vertices (SV) by linking vertices with shared tracks
- identify vertices within jet $\Delta R(SV, j) < 0.5$
 - SV tagging

jet tagging - BDT distributions [JINST (2015)10:P06013]

- two separate BDTs trained on jet and SV properties
 - BDT(bc|udsg) separate light from heavy flavour
 - BDT(b|c) separate b from c jets

- bdt distributions and fits for b, c-jet enriched sample (D + jet)
- uncertainty on tagging-efficiency of $\approx 10\%$
- jets can be SV-tagged and
 - the \boldsymbol{b} and \boldsymbol{c} jet composition extracted from fits to bdt distributions or
 - further cuts placed on the BDT scores to improve rejection

heavy flavour tagging efficiency [JINST(2015)10:P06013]

• light-jet mistag rate <1% for b-tag efficiency of 65% and c-tag efficiency of 25%

 $\mu + b$ - data and selection [Phys. Rev. Lett.(2015)115:p. 112001]

- combined measurement of single top and $t\bar{t}$ in $\mu+b$ final state
 - based on measurements of Wb, Wc production [Phys. Rev.(2015)D92:p. 052001]
- $p_T(\mu) > 25 \text{ GeV}, \ 50 < p_T(j) < 100 \text{ GeV}$
- $2.0 < \eta(\mu) < 4.5$, $2.2 < \eta(j) < 4.2$
- $\Delta R(\mu, j) > 0.5$
- $p_T(\mu+j) > 20 \,\mathrm{GeV}$
 - acts as proxy for missing energy
- analysis performed using 3.0 fb^{-1} of data collected in 2011 and 2012
 - 7 and 8 TeV combined
- $\bullet\,$ primary backgrounds expected from QCD di-jet production and Wb

$\mu+b$ - purity determination $\ensuremath{\mathit{[Phys. Rev. Lett.(2015)115:p. 112001]}}$

- purity determined by fit to $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ in bins of $p_T(\mu+j)$

– j_{μ} is jet containing the muon

• background shapes obtained from data and corrected using simulation

 $\mu+b$ - significance [Phys. Rev. Lett.(2015)115:p. 112001]

- profile likelihood used to compare Wb hypothesis with Wb + top
- both differential yield and charge asymmetry as a function of $p_{\rm T}(\mu+b)$ used
 - combined 7 and 8 TeV datasets
- 5.4 σ significance observed

$\mu+b$ - cross-section [Phys. Rev. Lett.(2015)115:p. 112001]

- combined single-top and $t\bar{t}$ cross-sections determined by subtracting W+b background from data
- $t\bar{t}$ accounts for $\approx 3/4$ of top production
- corrected for efficiencies determined from both data and simulation
- total signal yield of 220 ± 39 events
- cross-sections in agreement with predictions (MCFM NLO, CT10)

source	uncertainty
GEC	2%
$p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ templates	5 - 10%
jet reconstruction	2%
SV-tag BDT templates	5%
b-tag efficiency	10%
trigger & μ selection	$2\%^{\dagger}$
jet energy	$5\%^{\dagger}$
$W \rightarrow \tau \rightarrow \mu$	$1\%^{\dagger}$
luminosity	$1-2\%^{\dagger}$

† - only applies to cross-section

 $\ell + b \overline{b}$ - selection [Phys. Lett.(2017)B767:pp. 110–120]

- simultaneous measurement of $W+b\bar{b},\,W+c\bar{c}$ and $t\bar{t}$ production at LHCb in both $\mu b\bar{b}$ and $eb\bar{b}$ final states
 - performed with 2.0 fb $^{-1}$ at 8 TeV
- $p_T(\ell) > 20 \text{ GeV}, \ 12.5 < p_T(j) < 100 \text{ GeV}$
- 2.0 < $\eta(\mu)$ < 4.5, 2.0 < $\eta(e)$ < 4.25, 2.2 < $\ell(j)$ < 4.2
- $\Delta R(\ell, j) > 0.5$
- $p_T(\ell + j_1 + j_2) > 20 \,\text{GeV}$
- leptons required to be isolated
- both jets required to be SV-tagged and satisfy BDT(bc|udsg) > 0.2

- 4-dimensional fit to extract signal yields
 - di-jet invariant mass
 - BDT(b|c) for both jets separation between b and c-jets
 - uGB BDT trained to separate W+bband $t\bar{t}$ events using uniform boosting technique [JINST(2015)10:T03002]
- samples split by lepton charge and flavour
- backgrounds determined from mixture of data and simulation

$\ell + b\overline{b}$ - results [Phys. Lett.(2017)B767:pp. 110–120]

- $t\bar{t}$ signal observed with significance of 4.9 σ
- measurement precision $\sim 40\%$
 - similar contributions from statistical and systematic sources
- many systematics will reduce with higher statistics
 - purity extraction, tagging efficiency, jet energy scale
- first observation of $W+c\bar{c}$ production

conclusion and outlook

- measurements of top quark production in μb and $\ell b \bar b$ final states in Run-I
 - significances of 5.4 and 4.9 σ respectively
 - in agreement with SM expectations
- large increase in cross-section expected in Run-II
 - up to factor of 10 increase in expected yield
 - gives access to high purity final states
- analysis of Run-II data underway
 - first measurement in μeb final state soon
 - first measurement of charge asymmetry in the forward region
- looking forward to top physics program with Run-II data

backup

top quarks in the forward region [LHCb-PUB-2013-009]

• expected number of $t\bar{t}$ events in LHCb fiducial region by final state

-
$$2 < \eta(\ell, j) < 4.5$$

– $p_{\rm T}(\mu,j)>20~{\rm GeV}$

	$d\sigma(\text{fb})$	7 TeV			8 TeV			14 TeV			
£	lb	285	±	52	504	±	94	4366	±	663	
	lbj	97	±	21	198	\pm	35	2335	\pm	323	
	lbb	32	\pm	6	65	\pm	12	870	\pm	116	
	lbbj	10	\pm	2	26	±	4	487	\pm	76	
	$l^{+}l^{-}$	44	\pm	9	79	\pm	15	635	\pm	109	
	l^+l^-b	19	±	4	39	±	8	417	±	79	

- large increase in yield with increasing \sqrt{s}
 - increase in both cross-section and acceptance

background determination

- expected Wb contribution determined by measuring \widehat{Wj} in data and using Wb/Wj from simulation
- method validated using *Wc* which does not contain additional contributions (e.g. top)

top quarks in the forward region [LHCb-PUB-2013-009]

- LHCb has low acceptance for heavy mass objects
 - what final state should we measure?
- expected number of $t\bar{t}$ events in LHCb fiducial region by final state
 - 2 < $\eta(\ell, j)$ < 4.5
 - $p_{\rm T}(\mu,j)>20~{\rm GeV}$

$d\sigma(\text{fb})$	7 TeV			8 TeV			14 TeV			
lb	285	±	52	504	±	94	4366	±	663	
lbj	97	±	21	198	\pm	35	2335	\pm	323	
lbb	32	\pm	6	65	\pm	12	870	\pm	116	
lbbj	10	\pm	2	26	\pm	4	487	\pm	76	
$l^{+}l^{-}$	44	\pm	9	79	\pm	15	635	\pm	109	
l^+l^-b	19	\pm	4	39	\pm	8	417	\pm	79	

- + ℓb final state is most statistically accessible at LHCb in Run-I
 - will contain largest background component
- large increase in yield with increasing \sqrt{s}
 - increase in both cross-section and acceptance

asymmetry at LHCb

 $\ell + bb$

