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• optimised to study CP Violation in B and D decays at the LHC
• fully instrumented between 2.0 ≤ η ≤ 5.0
• excellent tracking, PID and vertexing capabilities
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• 2011 - 1.0 fb−1 - 7 TeV
• 2012 - 2.0 fb−1 - 8 TeV
• 2015/2016 - 2.0 fb−1 at 13 TeV

LHCb [JINST(2008)3:S08005]
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ATLAS, lepton+jets
PRD 91 (2015) 112013, -1 = 20.3 fbintL

 8 pb±  23−
 22+ 1 ±260 

CMS, lepton+jets
EPJC 77 (2017) 15, -1 = 19.6 fbintL

 6.0 pb± 13.7 ± 3.8 ±228.5 

hτCMS, lepton+
PLB 739 (2014) 23, -1 = 19.6 fbintL

 7 pb± 24 ± 3 ±257 

µATLAS, dilepton e
EPJ C74 (2014) 3109, EPJ C76 (2016) 642, 

-1 = 20.2 fbintL

 5.1 pb± 5.5 ± 1.7 ±242.9 

)µ, eµµCMS, dilepton (ee, 
JHEP 02 (2014) 024, -1 = 5.3 fbintL

 6.2 pb± 11.3 ± 2.1 ±239.0 

 (Sep 2014)µLHC combined e
ATLAS-CONF-2014-053, CMS-PAS TOP-14-016, 

-1 = 5.3 - 20.3 fbintL

 6.2 pb± 5.7 ± 1.4 ±241.5 

µCMS, dilepton e
JHEP 08 (2016) 029, -1 = 19.7 fbintL

 6.4 pb±  5.5−
 6.3+ 1.4 ±244.9 

CMS, all jets
EPJ C76 (2016) 128, -1 = 18.4 fbint     L  7.2 pb± 37.8 ± 6.1 ±275.6 

• measurements of single-top and top-pair
production in pp collisions performed by
ATLAS and CMS in the central region

• experimental precision ∼ 3.5%
• theoretical calculations available at NNLO
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• tt̄ production places constraint on gluon
pdf [1706.00428 [hep-ph]]

top quark production in pp collisions
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Why look at tops in the forward region?
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• test of differential predictions
• reduced gg contribution to top produc-
tion in the forward region
– increased tt̄ asymmetry
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• can provide constraints on gluon PDF at
higher-x than central region
– up to 20-30% reduction possible at

large-x

top quarks in the forward region [JHEP(2014)02:p. 126]
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• LHCb as a top factory
– 3 excellent tracking and vertexing
-> good b-tagging performance

– 7 low acceptance for heavy mass objects
– 7 low instantaneous luminosity

• partial reconstruction attractive to achieve high statistics
– large backgrounds expected

• 1. Heavy Flavour Tagging
Identification of beauty and charm quark jets at LHCb [JINST(2015)10:P06013]

• 2. Top in the µb final state
First observation of top quark production in the forward region [Phys. Rev. Lett.(2015)115:p. 112001]

• 3. Top in the `bb final state
Measurement of forward tt, W + bb and W + cc production in pp collisions at

√
s = 8 TeV [Phys.

Lett.(2017)B767:pp. 110–120]

(all studies so far with Run-I data)

top quarks at LHCb
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• jets reconstructed using anti-kT algorithm and R=0.5
• tagging performed using inclusive b and c-jet tagger
• reconstruct 2-body vertices in event
• merge into n-body vertices (SV) by linking vertices with shared
tracks

• identify vertices within jet - ∆R(SV, j) < 0.5
– SV tagging

jet

SV

jets and tagging at LHCb [JINST(2015)10:P06013]
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• two separate BDTs trained on jet and SV properties
– BDT(bc|udsg) - separate light from heavy flavour
– BDT(b|c) - separate b from c jets
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• bdt distributions and fits for b, c-jet enriched sample (D + jet)

• uncertainty on tagging-efficiency of ≈ 10%

• jets can be SV-tagged and
– the b and c jet composition extracted from fits to bdt distributions or
– further cuts placed on the BDT scores to improve rejection

jet tagging - BDT distributions [JINST(2015)10:P06013]
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• light-jet mistag rate < 1% for b-tag efficiency of 65% and c-tag efficiency of 25%

heavy flavour tagging efficiency [JINST(2015)10:P06013]
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• combined measurement of single top and tt̄ in µ+ b final state
– based on measurements of Wb, Wc production [Phys. Rev.(2015)D92:p. 052001]

• pT (µ) > 25 GeV, 50 < pT (j) < 100 GeV

• 2.0 < η(µ) < 4.5, 2.2 < η(j) < 4.2

• ∆R(µ, j) > 0.5

• pT (µ+ j) > 20 GeV
– acts as proxy for missing energy

• analysis performed using 3.0 fb−1 of data collected in 2011 and 2012
– 7 and 8 TeV combined

• primary backgrounds expected from QCD di-jet production and Wb

µ+ b - data and selection [Phys. Rev. Lett.(2015)115:p. 112001]
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• purity determined by fit to pT(µ)/pT(jµ) in bins of pT (µ+ j)
– jµ is jet containing the muon

• background shapes obtained from data and corrected using simulation

µ+ b - purity determination [Phys. Rev. Lett.(2015)115:p. 112001]
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• profile likelihood used to compare Wb hypothesis with Wb+ top

• both differential yield and charge asymmetry as a function of pT(µ+ b) used
– combined 7 and 8 TeV datasets

• 5.4σ significance observed

µ+ b - significance [Phys. Rev. Lett.(2015)115:p. 112001]
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• combined single-top and tt̄ cross-sections
determined by subtracting W + b back-
ground from data

• tt̄ accounts for ≈ 3/4 of top production
• corrected for efficiencies determined from
both data and simulation

• total signal yield of 220± 39 events
• cross-sections in agreement with predic-

tions (MCFM NLO, CT10)

Table 1: Relative experimental systematic uncertainties. The symbol † denotes an uncertainty
that only applies to the cross-section measurement and not the significance determination. Only
the luminosity uncertainty depends on

√
s: 2% at 7 TeV and 1% at 8 TeV.

source uncertainty

GEC 2%
pT(µ)/pT(jµ) templates 5–10%
jet reconstruction 2%
SV-tag BDT templates 5%
b-tag efficiency 10%
trigger & µ selection 2%†

jet energy 5%†

W → τ → µ 1%†

luminosity 1–2%†

taken from the data-driven studies of Refs. [21, 25]. The uncertainty due to the jet energy
determination is obtained from the data-driven study used to obtain the detector-response
matrix. The uncertainty due to W → τ → µ contamination is taken as the difference
between the contamination in simulation versus that of a data-driven study of inclusive
W → µν production [26]. The luminosity uncertainty is described in detail in Ref. [27].
The total systematic uncertainty, which includes the contribution from the direct W+b
prediction, is 16%.

The resulting inclusive top production cross-sections in the fiducial region defined by
pT(µ) > 25GeV, 2.0 < η(µ) < 4.5, 50 < pT(b) < 100GeV, 2.2 < η(b) < 4.2, ∆R(µ, b) >
0.5, and pT(µ+ b) > 20GeV, are

σ(top)[7TeV] = 239± 53 (stat)± 38 (syst) fb ,

σ(top)[8TeV] = 289± 43 (stat)± 46 (syst) fb .

The systematic uncertainties are nearly 100% correlated between the two measurements.
Top quark production is observed for the first time in the forward region. The cross-section
results are in agreement with the SM predictions of 180+51

−41(312
+83
−68) fb at 7(8) TeV obtained

at NLO using MCFM.
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† - only applies to cross-section

µ+ b - cross-section [Phys. Rev. Lett.(2015)115:p. 112001]
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• simultaneous measurement of W + bb, W + cc and tt̄ production at LHCb in both µbb
and ebb final states

– performed with 2.0 fb−1 at 8TeV

• pT (`) > 20 GeV, 12.5 < pT (j) < 100 GeV

• 2.0 < η(µ) < 4.5, 2.0 < η(e) < 4.25, 2.2 < `(j) < 4.2

• ∆R(`, j) > 0.5

• pT (`+ j1 + j2) > 20 GeV

• leptons required to be isolated

• both jets required to be SV-tagged and satisfy BDT(bc|udsg) > 0.2

`+ bb - selection [Phys. Lett.(2017)B767:pp. 110–120]
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• 4-dimensional fit to extract signal yields
– di-jet invariant mass
– BDT(b|c) for both jets - separation

between b and c-jets
– uGB - BDT trained to separateW+bb

and tt̄ events using uniform boosting
technique [JINST (2015)10:T03002]

• samples split by lepton charge and flavour
• backgrounds determined from mixture of

data and simulation

`+ bb - signal [Phys. Lett.(2017)B767:pp. 110–120]
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 = 8 TeVsLHCb, • tt signal observed with significance of 4.9σ

• measurement precision ∼ 40%
– similar contributions from statistical

and systematic sources
• many systematics will reduce with higher

statistics
– purity extraction, tagging efficiency,

jet energy scale
• first observation of W + cc̄ production

`+ bb - results [Phys. Lett.(2017)B767:pp. 110–120]
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• measurements of top quark production in µb and `bb final states in Run-I
– significances of 5.4 and 4.9σ respectively
– in agreement with SM expectations

• large increase in cross-section expected in Run-II
– up to factor of 10 increase in expected yield
– gives access to high purity final states

• analysis of Run-II data underway
– first measurement in µeb final state soon
– first measurement of charge asymmetry in the forward region

• looking forward to top physics program with Run-II data

tt

conclusion and outlook
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• expected number of tt̄ events in LHCb fiducial region by final state
– 2 < η(`, j) < 4.5
– pT(µ, j) > 20 GeV

datasets at higher centre of mass energies. The dilepton channel is interesting as it is the
best way of probing a pair of top quarks in one event and would allow a measurement
of Ac. In this case, the minimum pT requirements in the dilepton channel are 7, 10 GeV
for electrons and muons respectively. The looser cuts in this channel reflect that the
QCD background for producing opposite flavour, charged leptons is small. The electron
cut is looser than that of the muon as calorimetry resolution for electrons is generally
poorer. Requiring the presence a soft b-jet (pT > 20 GeV) can greatly reduce electro-
weak backgrounds.

2.1 Production cross section

The tt̄ signal is simulated using POWHEG [10–13], including 7-point scale variation for
CT10wnlo [14], MSTW2008nlo68cl [15], NNPDF22 [16] central PDF sets, and then
matched to Pythia8 [17]. The 7-point scale variation of factorisation (µF ) and renor-
malisation (µR) takes the reference points obtained by varying independently µF and µR

such that,
1

2
<

µF ·mt

µR ·mt

< 2. (9)

This is an approximate method of evaluating the potential uncertainty arising from ne-
glected higher-order corrections. The resulting tt cross sections in the pseudorapidity
range 2 < η < 4.5 relevant to LHCb are summarised in Table 1. The total uncertainty of
≈ 20% corresponds to ≈ 14% (scale) +8% (PDF) +10% (shower, tagging). The majority
of the PDF uncertainty reflects the difference in predictions of the gluon PDF at high x
for the different sampled central PDF sets. The shower and tagging uncertainty arises
from re-seeding the showering process whilst varying colour reconnection parameters and
the shower scale, as well as an effect coming from smearing in the full decay. The higher
multiplicity and dilepton channels have no considerable event yield until

√
s = 14 TeV

centre of mass energies.

dσ(fb) 7 TeV 8 TeV 14 TeV

lb 285 ± 52 504 ± 94 4366 ± 663
lbj 97 ± 21 198 ± 35 2335 ± 323
lbb 32 ± 6 65 ± 12 870 ± 116
lbbj 10 ± 2 26 ± 4 487 ± 76
l+l− 44 ± 9 79 ± 15 635 ± 109
l+l−b 19 ± 4 39 ± 8 417 ± 79

Table 1: Summary of tt̄ differential cross section channels within the LHCb acceptance (2
< η < 4.5) for

√
s = 7, 8, 14 TeV LHC centre of mass energies. The quoted uncertainty

accounts for variation of scale, PDF and the shower modelling uncertainty, as described
in the text.

4

• large increase in yield with increasing
√
s

– increase in both cross-section and acceptance

top quarks in the forward region [LHCb-PUB-2013-009]
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• expected Wb contribution determined by measuring
Wj in data and using Wb/Wj from simulation

• method validated using Wc which does not
contain additional contributions (e.g. top)

background determination
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• LHCb has low acceptance for heavy mass objects
– what final state should we measure?

• expected number of tt̄ events in LHCb fiducial region by final state
– 2 < η(`, j) < 4.5
– pT(µ, j) > 20 GeV

datasets at higher centre of mass energies. The dilepton channel is interesting as it is the
best way of probing a pair of top quarks in one event and would allow a measurement
of Ac. In this case, the minimum pT requirements in the dilepton channel are 7, 10 GeV
for electrons and muons respectively. The looser cuts in this channel reflect that the
QCD background for producing opposite flavour, charged leptons is small. The electron
cut is looser than that of the muon as calorimetry resolution for electrons is generally
poorer. Requiring the presence a soft b-jet (pT > 20 GeV) can greatly reduce electro-
weak backgrounds.

2.1 Production cross section

The tt̄ signal is simulated using POWHEG [10–13], including 7-point scale variation for
CT10wnlo [14], MSTW2008nlo68cl [15], NNPDF22 [16] central PDF sets, and then
matched to Pythia8 [17]. The 7-point scale variation of factorisation (µF ) and renor-
malisation (µR) takes the reference points obtained by varying independently µF and µR

such that,
1

2
<

µF ·mt

µR ·mt

< 2. (9)

This is an approximate method of evaluating the potential uncertainty arising from ne-
glected higher-order corrections. The resulting tt cross sections in the pseudorapidity
range 2 < η < 4.5 relevant to LHCb are summarised in Table 1. The total uncertainty of
≈ 20% corresponds to ≈ 14% (scale) +8% (PDF) +10% (shower, tagging). The majority
of the PDF uncertainty reflects the difference in predictions of the gluon PDF at high x
for the different sampled central PDF sets. The shower and tagging uncertainty arises
from re-seeding the showering process whilst varying colour reconnection parameters and
the shower scale, as well as an effect coming from smearing in the full decay. The higher
multiplicity and dilepton channels have no considerable event yield until

√
s = 14 TeV

centre of mass energies.

dσ(fb) 7 TeV 8 TeV 14 TeV

lb 285 ± 52 504 ± 94 4366 ± 663
lbj 97 ± 21 198 ± 35 2335 ± 323
lbb 32 ± 6 65 ± 12 870 ± 116
lbbj 10 ± 2 26 ± 4 487 ± 76
l+l− 44 ± 9 79 ± 15 635 ± 109
l+l−b 19 ± 4 39 ± 8 417 ± 79

Table 1: Summary of tt̄ differential cross section channels within the LHCb acceptance (2
< η < 4.5) for

√
s = 7, 8, 14 TeV LHC centre of mass energies. The quoted uncertainty

accounts for variation of scale, PDF and the shower modelling uncertainty, as described
in the text.

4

• `b final state is most statistically accessible at LHCb in Run-I
– will contain largest background component

• large increase in yield with increasing
√
s

– increase in both cross-section and acceptance

top quarks in the forward region [LHCb-PUB-2013-009]
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