

Diboson Results from CMS

Nate Woods

University of Wisconsin—Madison

On behalf of the CMS Collaboration

Motivation

- Multi-V (V ∈ Z, W[±], γ) final states are an important probe of the SM electroweak (EWK) sector
 - Sensitive to deviations from SM
 - Insight into gauge boson (self-)couplings
 - Natural first search channels for anomalous couplings (aTGCs and aQGCs)
 - Is the Higgs we found enough to preserve unitarity?
- Impressive theoretical progress: NNLO available for most states
- Run I analyses wrapping up
 - Today: WZ \rightarrow 3 $\ell\nu$ differential+aTGC, WV \rightarrow $\ell\nu$ q \bar{q} aTGC
- Enough data \otimes time for some mature 13 TeV results
 - Today: WZ $\rightarrow 3\ell\nu$ inclusive, ZZ $\rightarrow 4\ell$ differential+aTGC, Z $\gamma \rightarrow \nu \bar{\nu} \gamma$

7 July 2017

ZZ→4ℓ (2016 13 TeV)

Motivation

- Very clean, fully reconstructed final state
- Sensitive to higher-order QCD corrections
- Good channel for neutral aTGC search
- Background to Higgs and searches
- Inclusive and differential cross sections and aTGC limits with full 13 TeV dataset

Selections

- Lepton ID, isolation optimized for efficiency
- Full spectrum: $m_{Z_1}(m_{Z_2})$ in 40(4)-120 GeV
 - Z→4*ℓ*: *m*_{4ℓ} in 80-100 GeV
- On-shell: Both Z masses in 60-120 GeV

$ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$

- Backgrounds small, Z+jets and tt from data
 - Z+l'l' control regions with one or both l' failing ID or isolation
 - Derive per-lepton transfer factors from $Z + \ell_{fake}$ sample
- VVV, ttV and Higgs backgrounds from MC
- World-best neutral aTGC limits from $m_{4\ell}$ fit L = 35.9 fb⁻¹, \s = 13 TeV CMS Preliminary with SHERPA samples • $Z \rightarrow 4$ branching fraction: 0.002 $\mathfrak{B}(4\ell) = 4.74 \pm 0.16(\text{stat})$ $^{+0.18}_{-0.17}$ (syst) \pm 0.08 (theo) $\pm 0.12 (lumi) \times 10^{-6}$ -0.002 Expected 68% C.I Expected 95% C.L xpected 99% C.L • MG5_aMC: 4.6×10^{-6} Observed 95% C I -0.004-0.004 0.002 0.004 -0.002

Nate Woods

 \Rightarrow

EPS HEP2017

 $ZZ \rightarrow 4\ell$

• Total inclusive cross section (*m*_Z 60-120 GeV):

 $\sigma(\text{pp} \rightarrow \text{ZZ}) = 17.8 \pm 0.6 \,(\text{stat})^{+0.7}_{-0.6} \,(\text{syst}) \pm 0.4 \,(\text{theo}) \pm 0.5 \,(\text{lumi}) \,\text{pb}$

WZ $\rightarrow 3\ell\nu$

(7+8 TeV, 2015 13 TeV)

Motivation

- Clean leptonic final state
- Very sensitive to higher-order QCD corrections
- Sensitive to charged aGC
- Background to searches (e.g. H[±])
- Differential cross sections + aTGC at 8TeV, inclusive cross section at 13 TeV
- Selections
 - Three good, isolated leptons $+ E_T^{miss}$
 - 76 < m_Z < 106 GeV, $m_{3\ell}$ > 100 GeV
 - Veto on extra lepton or b jet (13 TeV)

CMS-SMP-16-002 (PLB) CMS-SMP-14-014 (EPJC)

WZ \rightarrow 3 $\ell\nu$

Background

- Zγ, ZZ, VVV, V+top from MC
- Nonprompt (largest) from data control region like signal except with 1, 2, or 3 leptons failing ID or isolation
 - Calculate per-lepton transfer factors in dijet events
- Largest systematics are nonprompt background estimation_{0.02} and E_T^{miss}
- 8 TeV aTGC limits from fit to Z $p_{\rm T}$

EPS HEP2017

Nate Woods

7

WZ $\rightarrow 3\ell\nu$

13 TeV total inclusive cross section:

 $\sigma(pp \rightarrow WZ) = 39.9 \pm 3.2 \,(\text{stat})^{+2.9}_{-3.1} \,(\text{syst}) \pm 0.4 \,(\text{theo}) \pm 1.3 \,(\text{lumi}) \,\text{pb.}$

- Theory: NLO $(46.1^{+4.9\%}_{-3.9\%})$, NNLO $(51.1^{+2.2\%}_{-2.0\%})$ [arXiv:1604.08576]
- Difference with ATLAS statistically significant

8 TeV differential cross sections

- D'Agostini unfolding (5 iterations)
- Compare with LO MadGraph and fixedorder NLO MCFM

100

150

200

250

300

p_z^Z (GeV)

19.6 fb⁻¹ (8 TeV

MadGraph

Data

MCEM

CMS-PAS-SMP-16-012

CMS-SMP-13-008 (PLB)

WV*→ℓν*q̄q (8TeV+ 2015 13 TeV)

Motivation

- Large V(W/Z) $\rightarrow q\bar{q}$ branching fraction
- Similar to high-mass resonance search
- V boosted to BSM-sensitive "fat" jet
- Selections at 13 (8) TeV
 - Standard leptonic W, $p_{\rm T}$ > 200 GeV
 - V_{had} an AK8 (CA8) jet with substructure ID
 - N-subjettiness $\tau_2 / \tau_1 < 0.6 \ (0.55)$
 - $40 < m_{pruned} < 150$ (140), $p_{\rm T} > 200~{\rm GeV}$
 - Veto additional jets (tighter cut for b jets)
 - $\Delta R(\ell, j) > \pi/2, \Delta \phi(E_T^{miss}, j) > 2.0,$ $\Delta \phi(W_{lep}, j) > 2.0$

WV $\rightarrow \ell \nu q \overline{q}$

- Backgrounds: W+jets, tt, single-t
 - Shapes from analytical functions fit to MC
 - Normalizations from m_{pruned} distributions $\frac{3}{2}$
- Largest systematic (12%) is V-tag efficiency
- Method at 13 (8) TeV
 - aTGC signal from MG5_aMC via ME reweighting (MCFM without reweighting)
 - Extract yields and significance with simultaneous fit to $m_{\rm WV} > 900~{\rm GeV}\left(p_{\rm T}^{\rm j}\right)$
 - Full ν momentum found with W mass constraint
- Tighter WWZ aC limits than leptonic channels
 - 8 TeV $\lambda_{\mathrm{z}/\gamma}$ and Δg_1^Z limits tightest to date

10

CMS-PAS-SMP-16-004

$Z\gamma \rightarrow \nu \bar{\nu} \gamma$ (2015 13 TeV)

Motivation

- Tree-level SM production only through ISR
 - Sensitive to anomalous $Z\gamma$ couplings
- Background to monophoton search
- Selection
 - Tight photon ID and isolation
 - $E_{\rm T}^{\gamma} > 175 \; {
 m GeV}, \, |\eta^{\gamma}| < 1.44,$
 - $E_{\rm T}^{miss} > 170 {\rm ~GeV}$
 - Tight lepton veto, $\Delta \phi(\gamma, \vec{E}_{T}^{miss}) > 2$, $\Delta \phi(j, \vec{E}_{T}^{\gamma}) < 0.5$
 - ECAL timing cut and shape requirement to reject halo and detector effects

CMS-PAS-SMP-16-004

 $Z\gamma \rightarrow \nu\nu\gamma$

- Signal MC: LO MadGraph5_aMC@NLO
- Background estimation
 - $W\gamma \rightarrow \ell \nu \gamma$ and small others: MC
 - W \rightarrow ev: CR with inverted pixel veto
 - Transfer function from pixel efficiency
 - Cosmics+ECAL spikes: ECAL timing fit
- Largest systematics: energy scales, background estimation, EWK theory
- $\sigma_{\rm fid} = 66.5 \pm 13.6$ (stat) ± 14.3 (syst) ± 2.2 (lumi) fb
 - $E_{\rm T}^{\gamma} > 175~{
 m GeV}, ~|\eta^{\gamma}| < 1.44$
 - NNLO theory: 65.5 ± 3.3 fb [arXiv:1504.01330]

Shown today

State of the Field: WWZ aTGC

CMS ATLAS D0 LEP March 2017 Central Fit Value Channel *L*dt √s Limits 7 TeV -4.3e-02, 4.3e-02 ww 4.6 fb⁻¹ $\Delta \kappa_7$ -2.5e-02, 2.0e-02 8 TeV 20.3 fb⁻¹ ww -6.0e-02, 4.6e-02] 19.4 fb⁻¹ 8 TeV ww [-1.3e-01, 2.4e-01 8,13 TeV 33.6 fb⁻¹ WZ -2.1e-01, 2.5e-01 8 TeV 19.6 fb⁻¹ WZ -9.0e-02, 1.0e-01 4.6 fb⁻¹ 7 TeV WV -4.3e-02, 3.3e-02 5.0 fb⁻¹ 7 TeV WV 19 fb⁻¹ 8 TeV -2.3e-02, 3.2e-02 wv 13 TeV WV -4.0e-02, 4.1e-02 2.3 fb⁻¹ [-7.4e-02, 5.1e-02 0.20 TeV LEP Comb. 0.7 fb⁻¹ 4.6 fb⁻¹ 7 TeV -6.2e-02, 5.9e-02 ww λ_z 8 TeV ww -1.9e-02, 1.9e-02 20.3 fb⁻¹ -4.8e-02, 4.8e-02 4.9 fb⁻¹ 7 TeV ww 19.4 fb⁻¹ 8 TeV ww -2.4e-02, 2.4e-02] -4.6e-02, 4.7e-02 4.6 fb⁻¹ 7 TeV WZ 8,13 TeV 33.6 fb⁻¹ WZ -1.4e-02, 1.3e-02 -1.8e-02, 1.6e-02 19.6 fb⁻¹ 8 TeV WZ -3.9e-02, 4.0e-02 7 TeV 4.6 fb⁻¹ WV -3.8e-02, 3.0e-02 5.0 fb⁻¹ 7 TeV WV WV -1.1e-02, 1.1e-02 19 fb⁻¹ 8 TeV 2.3 fb⁻¹ 13 TeV -3.9e-02, 3.9e-02 wv -3.6e-02, 4.4e-02 1.96 TeV 8.6 fb⁻¹ D0 Comb. 0.20 TeV LEP Comb. -5.9e-02, 1.7e-02 0.7 fb⁻¹ -3.9e-02, 5.2e-02 7 TeV 4.6 fb⁻¹ Δg_1^Z ww 8 TeV ww -1.6e-02. 2.7e-02 20.3 fb⁻¹ -9.5e-02, 9.5e-02 4.9 fb⁻¹ 7 TeV ww 8 TeV -4.7e-02, 2.2e-02 19.4 fb⁻¹ ww -5.7e-02, 9.3e-02 4.6 fb⁻¹ 7 TeV WZ 8,13 TeV -1.5e-02, 3.0e-02 33.6 fb⁻¹ WZ [-1.8e-02, 3.5e-02] 19.6 fb⁻¹ 8 TeV WZ -5.5e-02, 7.1e-02 4.6 fb⁻¹ 7 TeV WV -8.7e-03, 2.4e-02 19 fb⁻¹ 8 TeV wv 2.3 fb⁻¹ -6.7e-02, 6.6e-02 13 TeV WV D0 Comb. 8.6 fb⁻¹ 1.96 TeV [-3.4e-02, 8.4e-02] [-5.4e-02, 2.1e-02] 0.7 fb⁻¹ LEP Comb. 0.20 TeV 0 0.5 aTGC Limits @95% C.L. \Rightarrow

7 July 2017

Nate Woods

EPS HEP2017

Shown today

State of the Field: ZZγ/ZZZ aTGC

CMS ATLAS ATLAS+CMS Channel Limits ∫ Ldt √s ZZ (41,212v) [-1.5e-02, 1.5e-02] 4.6 fb⁻¹ 7 TeV ZZ (41,212v) [-3.8e-03, 3.8e-03] 20.3 fb⁻¹ 8 TeV ZZ (4I) [-1.8e-03, 1.8e-03] 36.1 fb⁻¹ 13 TeV ZZ (4I) [-5.0e-03, 5.0e-03] 19.6 fb⁻¹ 8 TeV ZZ (2l2v) 24.7 fb⁻¹ 7,8 TeV [-3.6e-03, 3.2e-03] 7,8 TeV ZZ (41,212v) 24.7 fb⁻¹ [-3.0e-03, 2.6e-03] ZZ (4I) [-1.3e-03, 1.3e-03] 35.9 fb⁻¹ 13 TeV ZZ (41,212v) [-1.0e-02, 1.0e-02] 9.6 fb⁻¹ 7 TeV ZZ (41,212v) [-1.3e-02, 1.3e-02] 4.6 fb⁻¹ 7 TeV ZZ (4I,2I2v) [-3.3e-03, 3.2e-03] 20.3 fb⁻¹ 8 TeV ZZ (4I) [-1.5e-03, 1.5e-03] 36.1 fb⁻¹ 13 TeV ZZ (4I) [-4.0e-03, 4.0e-03] 19.6 fb⁻¹ 8 TeV ZZ (2l2v) [-2.7e-03, 3.2e-03] 24.7 fb⁻¹ 7,8 TeV ZZ (4I,2I2v) [-2.1e-03, 2.6e-03] 24.7 fb⁻¹ 7,8 TeV ш ZZ (4I) [-1.2e-03, 1.1e-03] 35.9 fb⁻¹ 13 TeV ZZ (41,212v) [-8.7e-03, 9.1e-03] 9.6 fb⁻¹ 7 TeV ZZ (41,212v) 4.6 fb⁻¹ [-1.6e-02, 1.5e-02] 7 TeV ZZ (41,212v) [-3.8e-03, 3.8e-03] 20.3 fb⁻¹ 8 TeV [-1.8e-03, 1.8e-03] ZZ (4I) 36.1 fb⁻¹ 13 TeV ZZ (4I) 19.6 fb⁻¹ 8 TeV [-5.0e-03, 5.0e-03] ZZ(2l2v) 7,8 TeV [-3.3e-03, 3.6e-03] 24.7 fb⁻¹ 7,8 TeV ZZ(41,212v) 24.7 fb⁻¹ [-2.6e-03, 2.7e-03] ZZ (4I) [-1.2e-03, 1.3e-03] 35.9 fb⁻¹ 13 TeV ZZ (41,212v) [-1.1e-02, 1.1e-02] 9.6 fb⁻¹ 7 TeV ZZ (4I,2I2v) 4.6 fb⁻¹ 7 TeV [-1.3e-02, 1.3e-02] ZZ (41,212v) [-3.3e-03, 3.3e-03] 20.3 fb⁻¹ 8 TeV ZZ (4I) [-1.5e-03, 1.5e-03] 36.1 fb⁻¹ 13 TeV ZZ (4I) [-4.0e-03, 4.0e-03] 19.6 fb⁻¹ 8 TeV 7.8 TeV ZZ (2l2v) [-2.9e-03, 3.0e-03] 24.7 fb⁻¹ 7,8 TeV ZZ (4I,2I2v) [-2.2e-03, 2.3e-03] 24.7 fb⁻¹ н ZZ (4I) [-1.0e-03, 1.2e-03] 35.9 fb⁻¹ 13 TeV ZZ (41,212v) [-9.1e-03, 8.9e-0_β] 9.6 fb⁻¹ 7 TeV

7 July 2017

May 2017

 f_4^{γ}

 f_4^Z

 f_5^{γ}

 f_5^Z

-0.02

Nate Woods

0

aTGC Limits @95% C.L.

0.04

0.02

 \rightleftharpoons

14

0.06

State of CMS Measurements: Diboson Cross Sections

- NNLO calculations now the default
- Overall good agreement with SM
- Many uncertainties are or will soon be systematics dominated
 - Challenges for experimentalists and theorists

 The "precision http://cern.ch/go/pNj7 measurements" dream will soon be reality

Conclusions

- Diboson measurements are important for SM and BSM physics
- CMS results in Zγ, WV, WZ, and ZZ overall consistent with SM
 - Confirm latest theory calculations
 - Place limits on aTGC parameters

 Large, mature datasets allow detailed measurements even for low cross section processes

Backup

The Whole SM

CMS Preliminary

Zγ Yields and Systematics

-	Sources	Effect on	cross section (%)		
 Systematics 	Luminosity			3.3	
-	PDF and QCD scale	6.8			
	Electroweak corrections	11.3			
	Jets misidentified as γ	1.3			
	Electron misidentified as	3.6			
	Beam halo		11.0		
	Spurious ECAL signals		5.0		
	$E_{\rm T}^{\rm miss}$, photon energy scales, p	ileup		7.1	
	Data/sim. scale factors		9.7		
Violala	Process	Estimate			
• Yields	$Z\gamma ightarrow u\overline{ u}\gamma$		± 6.67		
	$W\gamma ightarrow \ell u \gamma$	10.60 ± 1.58			
	W ightarrow e u	7.80 ± 1.78			
	Jet $ ightarrow \gamma$ misidentified	1.75 ± 0.61			
	Beam halo	5.90 ± 4.70			
	Spurious ECAL signals	5.63 ± 2.20			
	Rare backgrounds	3.03 ± 0.69			
	Total Expectation	76.45 ± 8.82			
	Data	77			

7 July 2017

Nate Woods \Rightarrow EPS HEP2017

More WV Plots

All WV Limits (8 TeV)

7 July 2017

Nate Woods \Rightarrow

All WV Limits (13 TeV)

22

WZ Yields and Systematics

					Sampl	e			eee	eeµ	$\mu\mu$ e	$\mu\mu\mu$	Total
(XIO/					$\sqrt{s} =$	7 TeV; <i>L</i>	$= 4.9 \mathrm{fb}^-$	1					
	/				Non	prompt le	ptons		2.2 ± 2.1	$1.5^{+4.8}_{-1.5}$	$2.4^{+5.1}_{-2.4}$	$1.8^{+7.5}_{-1.8}$	$7.9^{+13.0}_{-5.0}$
-	-				ZZ				2.0 ± 0.3	3.5 ± 0.5	2.7 ± 0.4	5.1 ± 0.7	13.3 ± 1.9
					Zγ				0	0	0.5 ± 0.5	0	0.5 ± 0.5
					VV	V			1.6 ± 0.8	2.0 ± 1.0	2.4 ± 1.2	3.0 ± 1.5	9.0 ± 4.5
					Tota	l backgro	und (N _{bkg}))	3.8 ± 2.3	$6.0\pm^{+4.9}_{-1.9}$	$8.0^{+5.1}_{-2.4}$	$9.9^{+7.7}_{-2.4}$	$30.7^{+13.9}_{-7.0}$
					WZ				44.7 ± 0.5	49.8 ± 0.5	56.0 ± 0.5	73.8 ± 0.6	224.3 ± 1.1
					Tota	1 expecte	d		50.5 ± 2.3	$56.8^{+5.0}_{-1.9}$	$64.0^{+5.3}_{-2.8}$	83.7 ^{+7.7} 2.5	$255^{+14.0}_{-7.0}$
					Data	a (N _{obs})			64	62	70	97	293
					$\sqrt{s} =$	8 TeV; <i>L</i>	$= 19.6 \text{fb}^{-1}$	-1					
					Non	prompt le	eptons		18.4 ± 12.7	32.0 ± 21.0	54.4 ± 33.0	62.4 ± 37.7	167.1 ± 55.8
					ZZ				2.1 ± 0.3	2.4 ± 0.4	3.2 ± 0.5	4.7 ± 0.7	12.3 ± 1.0
					$Z\gamma$				3.4 ± 1.3	0.4 ± 0.4	5.2 ± 1.8	0	9.1 ± 2.2
					Wγ	*			0	0	0	2.8 ± 1.0	2.8 ± 1.0
					V V	V			6.7 ± 2.2	8.7 ± 2.8	11.6 ± 3.8	14.8 ± 5.1	41.9 ± 7.3
					Tota	l backgro	und (N _{bkg}))	30.6 ± 13.0	43.5 ± 21.2	74.4 ± 33.3	84.7 ± 38.1	233.2 ± 56.3
					WZ				211.1 ± 1.6	262.1 ± 1.8	346.7 ± 2.1	447.8 ± 2.4	1267.7 ± 4.0
					Tota	l expecte	d		241.6 ± 13.1	305.7 ± 21.3	421.0 ± 33.3	532.4 ± 38.2	$1500.8 \pm 56.$
					Data	ı (N _{obs})			258	298	435	568	1559
Source	$\sqrt{s} =$	7 TeV			$\sqrt{s} =$	= 8 TeV							
	eee	eeµ	μμε	μμμ	eee	eeµ	μμε	μμμ					
Renorm. and fact. scales	1.3	1.3	1.3	1.3	3.0	3.0	3.0	3.0					
PDFs	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4					
Pileup	0.3	0.5	1.0	0.6	0.2	0.4	0.3	0.2					
Lepton and trigger efficiency	2.9	2.7	2.0	1.4	3.4	2.5	2.5	3.2					
Muon momentum scale	_	0.6	0.4	1.1	_	0.5	0.8	1.3					
Electron energy scale	1.9	0.8	1.2	_	1.4	0.8	0.8	_					
Emiss	3.7	3.4	4.3	3.7	1.5	1.5	1.6	1.2					
ZZ cross section	0.5	0.9	0.6	0.9	0.1	0.1	0.1	0.1					
$Z\nu$ cross section	0.0	0.0	0.1	0.0	0.2	0.0	0.2	0.0					
tt and Z+iets	2.7	6.5	6.3	6.0	4.6	7.2	6.1	7.7					
Other simulated backgrounds	0.2	0.2	0.9	0.2	1.0	1.1	1.1	1.0					
Total systematic uncertainty	6.1	7.8	8.1	7.2	7.0	8.6	7.7	9.2					
Statistical uncertainty	13.5	13.9	13.1	11.0	7.7	7.2	6.4	5.2					
Integrated luminosity uncertainty	2.2	2.2	2.2	2.2	2.6	2.6	2.6	2.6	ED6 L	FD2017			

23

WZ Yields (13 TeV)

Decay	$N_{\mathrm{WZ}}^{\mathrm{exp}}$	Background	Background	Total	Observed
channel		Non-prompt	Prompt	expected	
eee	$35.88 \pm 0.63^{+1.84}_{-1.78}$	$10.64 \pm 1.73^{+3.19}_{-2.46}$	$6.08 \pm 0.59 \substack{+0.73 \\ -0.66}$	$52.60 \pm 1.93^{+3.91}_{-3.29}$	49
eeµ	$50.23 \pm 0.77^{+2.41}_{-2.35}$	$14.83 \pm 3.56 \substack{+3.88 \\ -2.98}$	$7.57 \pm 0.47 ^{+1.00}_{-0.87}$	$72.63 \pm 3.67 ^{+4.89}_{-4.14}$	78
μμе	$56.02 \pm 0.80^{+2.47}_{-2.42}$	$21.56 \pm 3.21^{+5.01}_{-3.86}$	$8.43 \pm 0.55 ^{+1.17}_{-1.04}$	$86.01 \pm 3.35 ^{+5.90}_{-4.89}$	83
μμμ	$83.96 \pm 0.99^{+3.35}_{-3.27}$	$20.16 \pm 4.91^{+6.05}_{-4.65}$	$11.13 \pm 0.49^{+1.47}_{-1.28}$	$115.25 \pm 5.03^{+7.30}_{-6.09}$	108
Total	$226.09 \pm 1.61^{+9.46}_{-9.25}$	$67.19 \pm 7.08^{+14.43}_{-11.10}$	$33.21 \pm 1.05^{+4.32}_{-3.80}$	$326.50 \pm 7.33^{+18.66}_{-15.90}$	318

More WZ Plots

More WZ Plots

7 July 2017

Nate Woods \Rightarrow E

EPS HEP2017

ZZ Yields and Systematics

Uncertainty	$Z\to 4\ell$	$ZZ\to 4\ell$
Lepton efficiency	6–10%	2–6%
Trigger efficiency	2–4%	2%
MC statistics	1–2%	0.5%
Background	0.6–1.3%	0.5–1%
Pileup	1–2%	1%
PDF	1%	1%
QCD Scales	1%	1%
Integrated luminosity	2.6%	2.6%

Final	Expected	Background	Total	Observed
state	$N_{4\ell}$		expected	
4μ	$196.0 \pm 1.2 \pm 14.9$	$3.9\pm1.0\pm1.5$	$199.9 \pm 1.6 \pm 15.0$	196
2e2µ	$179.1 \pm 1.1 \pm 12.3$	$3.6\pm0.8\pm0.8$	$182.7 \pm 1.4 \pm 12.3$	167
4e	$59.1 \pm 0.6 \pm 6.7$	$2.4\pm0.4\pm1.0$	$61.4\pm0.8\pm6.8$	64
Total	$434.2 \pm 1.8 \pm 28.9$	$9.9\pm1.4\pm2.5$	$444.1 \pm 2.3 \pm 29.1$	427

Decay	Expected	Background	Total	Observed
channel	$N_{4\ell}$		expected	
4μ	$265.5 \pm 1.3 \pm 8.4$	$5.2\pm0.8\pm1.5$	$270.7 \pm 1.5 \pm 8.6$	290
2e2µ	$425.4 \pm 1.6 \pm 17.5$	$19.0\pm1.8\pm3.4$	$444.4 \pm 2.4 \pm 18.1$	465
4e	$165.3 \pm 1.0 \pm 10.9$	$11.8\pm1.5\pm2.2$	$177.2 \pm 1.8 \pm 11.4$	175
Total	$856.2 \pm 2.3 \pm 33.3$	$36.0 \pm 2.5 \pm 6.4$	$892.2 \pm 3.4 \pm 34.4$	930

7 July 2017

Nate Woods \Rightarrow EPS HEP2017

More ZZ Plots

More ZZ Plots

More ZZ Differential Cross

 \rightleftharpoons

More ZZ Differential Cross Sections

