

VV + jets and vector boson scattering at the

Riccardo Bellan Università di Torino and INFN

On behalf of the CMS Collaborations

EPS2017: The European Society Conference on High Energy Physics

Venezia, Italy, 5 July – 12 July, 2017

Top and electroweak physics session

R.Bellan

7th July 2017 - VV+jets and VBS at CMS

Stairway to Heaven or Highway to Hell?

- Standard Model cross sections successfully tested over 9 orders of magnitude
- We discovered a Higgs boson
- *Still* we have to understand <u>in detail</u> the Electroweak Symmetry Breaking

Mechanism (and if there is new physics

beyond the SM) It is crucial to deeply understand the final states **mediated by heavy gauge**

boson pair production: do we *master* them, using our NⁿLO computations?

Measure with high precision the differential cross sections Measure exclusive multi boson

production mechanisms,

such as **<u>VV</u> scattering**

and **QGC mediated**

Investigate the high VV mass region

• Quartic gauge couplings (QGC)

7th July 2017 – VV+jets and VBS at CMS

ZZ+jets analysis

Search for two <u>on-shell</u> (60 < $m_{\ell\ell}$ < 120 GeV) Z bosons decaying into

electrons or muons pairs, consider jets if their p_T is > 30 GeV

- Final state can be **fully reconstructed**
 - \rightarrow all kinematic variables are accessible
- Very clean final state
 - \rightarrow low reducible background
- Low σxBR compared to other channels

 \rightarrow maximize the selection efficiency (minimal cuts on lepton mainly driven by trigger thresholds, detector acceptance)

Cons

Pros

- **ZZ + QCD-induced jets** (irreducible background) **highly dominant** compared to pure EW production
 - \rightarrow understanding of the irreducible background is paramount

7th July 2017 – VV+jets and VBS at CMS

Summary of VV+jets measurements

R.Bellan

Understanding the irreducible background: differential cross sections of ZZ+jets (II)

as a function of the leading- p_T jet variables

Overall good agreement with two type of MC sets

R.Bellan

7th July 2017 – VV+jets and VBS at CMS

INFN

Overall good agreement with two type of MC sets

R.Bellan

7th July 2017 – VV+jets and VBS at CMS

as a function of the dijet variables

 m_{ii} in **good** agreement with MC while $|\Delta \eta_{ii}|$ seems **steeper** in data than in MC

7th July 2017 – VV+jets and VBS at CMS

R.Bellan

I N /= N

Search for the ZZ+jets EW production

induced jet production

7 inputs: $\mathbf{m}_{ii}, \Delta \eta_{ii}, \mathbf{z}_1^*, \mathbf{z}_2^*, \mathbf{R}(\mathbf{p}_T), \text{dijet } \mathbf{p}_T \text{ balance, } \mathbf{m}_{41}$

Overall very good data-theory agreement **Little discrimination** on individual variables Few expected signal events

Measured fiducial cross section $\sigma(EW pp \rightarrow ZZ + jets \rightarrow lll'l' + jets) = 0.40^{+0.21}_{-0.16}(stat)^{+0.13}_{-0.09}(syst) fb$

EW pp \rightarrow W[±]W[±]jj \rightarrow l[±]l[±]vvjj production SMP-17-004

- Search for a **pair of same charge lepton** (μ , e) with $p_{T,1(2)} > 25$ (20) GeV $m_{11} > 20$ GeV, **vetoing additional leptons** (including τ 's) in the event
- **Two jets** with $p_T > 30$ GeV, leading jets taken as tagging jets, $m_{ij} > 500$ GeV, $|\Delta \eta_{ij}| > 2.5$, max $(z_1^*) < 0.75$
- Low background contamination compared to other VBS search channels (thanks to its quite large σxBR)
 → # signal events ~ half of all background events
- Background from W[±]W[±]+jets induced by QCD very small compared to the signal. Main background from multi non-prompt leptons in the event and WZ → 3lv where a charged lepton is lost
 - To suppress DY $\rightarrow E_T^{\text{miss}} > 40 \text{ GeV}$ and $Z \rightarrow e^+e^-$ veto
 - To reduce top background: anti b-tagging, $m_{11} > 20 \text{ GeV}$

 Analysis also used to constrain the σxBR for the production of doubly charged Higgs boson decaying into two same sign W, resulting in a limit at 95% CL well below 100 fb for a large range of the H^{±±} mass

May 2017

Cross sections summary

CMS Preliminary

R.Bellan

7th July 2017 – VV+jets and VBS at CMS

- Search for **new physics** *while doing* **EW measurements**
- Look for deviations from SM in tail of distributions (**m**_{VV}, **m**_{II}, **m**_{II}, **p**_{T,V}, ...)
- Parametrize the new physics adding terms to the SM lagrangian
- Several possibilities, for the analyses presented here we made use of the
 Effective field theory approach [Phys. Rev. D 48(1993) 2182,

 Phys. Rev. D 74 (2006) 073005] to extract limits on anomalous quartic gauge couplings
- Parameters are varied *one-by-one*.

Anomalous quartic gauge couplings

Main variables for the search of anomaluous quartic gauge couplings → no evidence found so far

R.Bellan

7th July 2017 – VV+jets and VBS at CMS

' N **F** N

aQGC summary table

May 2017	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	√s
f _{τ,0} /Λ ⁴		Wγγ	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV
	⊢	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	├ ────┥	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	├ ────┤	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	⊢	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	⊢	Ζγ	[-3.4e+00, 3.4e+00]	29.2 fb ⁻¹	8 TeV
	⊢−−− ↓	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	⊢ −−− 	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
	Н	ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV
	Н	ZZ	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV
f _{T,1} /Λ ⁴	⊢	Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	⊢ −−1	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	H	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
	H	ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV
	Н	ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV
$f_{T,2}/\Lambda^4$	⊢−−−−− {	Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	⊢	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	⊢−−−− ↓	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	Н	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV
	Н	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
$f_{T,5} / \Lambda^4$	⊢−−−−− 	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
	┝━━┥	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,6} / \Lambda^4$	⊢⊣	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,7} / \Lambda^4$	├────┤	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,8}/\Lambda^4$	н	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
	н	Zγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV
	Н	ZZ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
f _{τ,9} /Λ ⁴	⊢−−−−−	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
	⊢	Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	⊢	Ζγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
		ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV
-50	0	50	10	0	ii
00	•				[T_1/-4]
		a	QGC Limits @9	0% U.L	. [iev]

R.Bellan

7^{th} July 2017 – VV+jets and VBS at CMS

 We discovered a Higgs boson, yet the comprehension of the Electroweak Symmetry Breaking is not completed

 \rightarrow Understanding the Multi-boson production in association with jets is the key point!

- Complementary to Higgs boson properties studies and high mass searches

- Observation of Electroweak production of two same sign W and two jets
 - Hint of the production of ZZ+jets through EW process

Time of multi-boson production is now, the New Frontier will be: VV + jets, Vector Boson Scattering and triboson production

→ they will be ones of the hot topic of LHC Run II!

Details on results can be found in the public pages of the CMS experiment: *http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html*

More Material

R.Bellan

 7^{th} July 2017 – VV+jets and VBS at CMS

ZZ+jets Complete Cut List

Fiducial region (baseline)

 $\begin{array}{l} p_T^e > 5 \ {\rm GeV}, \, |\eta^e| < 2.5 \\ p_T^\mu > 5 \ {\rm GeV}, \, |\eta^\mu| < 2.5 \\ p_T^{\ell_{3,4}} > 5 \ {\rm GeV} \\ p_T^{\ell_1} > 20 \ {\rm GeV}, \, p_T^{\ell_2} > 10 \ {\rm GeV} \\ m_{\ell^+\ell^-} > 4 \ {\rm GeV} \ (\text{any opposite-sign same-flavor pair}) \\ 60 < m_{Z_1}, m_{Z_2} < 120 \ {\rm GeV} \end{array}$

 $+ m_{ii} > 100 \text{ GeV}$

Search region (baseline)

Search region (VBS)

- $|\eta_e| < 2.5 p_T^e > 7 \text{ GeV}, |\eta_{\mu}| < 2.4 p_T^{\mu} > 5 \text{ GeV}, \text{ relative isolation } < 0.35$ in a cone of $\Delta R = 0.3$, CMS tight ID and SIP= $|IP/\sigma_{IP}| < 4$
- At least a lepton with $p_T > 20$ GeV and a $\mu(e)$ with $p_T > 10(12)$ GeV + $m_{ii} > 100$ GeV
- $60 < m_z < 120 \text{ GeV}$ (On shell), $m_{\text{ll crossed(Opposite sign same flavour)}} > 4 \text{ GeV}$
- Loosely ID jets, reco with anti- $k_T 0.4$; $|\eta_{iet}| < 4.7$ and $p_T > 30$ GeV

ZZ+jets systematic uncertainties

Systematic source	Absolute	Normalized
Trigger	2.0 %	-
Muon ID, ISO and Tracking	0.9 - 1.0 %	${<}0.1$ - $0.1~\%$
Electron ID, ISO and Tracking	2.8 - 3.5 %	0.1 - 0.7 %
Jet energy resolution	2.1 - 8.4 %	2.1 - 8.4 %
JES correction	4.6 - 17.6 %	4.6 - 17.6 %
Reducible background	0.5 - 2.5 %	0.3 - 1.8 %
Irreducible background	$<\!0.1$ - 1.2 $\%$	<0.1 - 1.1 %
Pileup	0.3 - 1.9 %	0.6 - 1.8 %
Luminosity	2.5 %	-
Monte Carlo choice	0.5 - 5.1 %	0.8 - 4.8 %
qq/gg cross section	$<\!0.1$ - $0.3~\%$	0.1 - 0.2 %
PDF	$<\!0.1$ - $0.2~\%$	${<}0.1$ - $0.2~\%$
α_S	$<\!0.1$ - $0.1~\%$	${<}0.1$ - $0.1~\%$

ZZ njets differential cross section

R.Bellan

ZZ+jets MVA input variablses

R.Bellan

ZZ+jets: ROC Curve

$m_{4\ell}$ [GeV]	m_{Z1} [GeV]	<i>m</i> _{Z2} [GeV]	m _{jj} [GeV]	$ \Delta\eta_{jj} $	$\eta_{Z_1}^{\star}$	$\eta^{\star}_{Z_2}$	BDT score
365.8	91.4	101.1	844.1	3.4	-0.7	0.0	0.97
325.1	93.1	96.3	1332.9	5.2	0.0	-1.8	0.98
263.8	91.9	88.0	829.7	2.2	-0.5	1.1	0.94
562.8	93.7	88.0	947.3	2.8	0.6	0.6	0.93
248.8	91.5	89.2	1340.9	5.4	-0.5	0.2	0.98
375.2	89.4	98.5	1052.5	3.8	0.7	-0.2	0.96
482.1	95.0	95.6	1543.1	4.8	-1.6	2.5	0.99

Fisice

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
f_{T_0}/Λ^4	-0.53	0.51	-0.46	0.44	0.6
f_{T_1}/Λ^4	-0.72	0.71	-0.61	0.61	0.6
f_{T_2}/Λ^4	-1.4	1.4	-1.2	1.2	0.6
f_{T_8}/Λ^4	-0.99	0.99	-0.84	0.84	2.8
f_{T_9}/Λ^4	-2.1	2.1	-1.8	1.8	2.9

Search region

- Two same charge lepton (μ , e) with $p_{T,1(2)} > 25$ (20) GeV, $|\eta| < 2.4$ (2.5), $m_{11} > 20$ GeV
- Veto events with additional leptons if p_T of a 3rd loosely ID lepton is > 10 GeV or the p_T of an identified τ (to hadrons) is > 18 GeV
- Two jets (anti- $k_T 0.4$) with $p_T > 30$ GeV, $|\eta| < 5$ leading jets taken as tagging jets, $m_{jj} > 500$ GeV, $|\Delta \eta_{jj}| > 2.5$, max $(z_1^*) < 0.75$ $Z_i^* = |\eta_l - (\eta_{jet,1} + \eta_{jet,2})/2|/|\Delta \eta_{jj}|$
- $E_T^{\text{miss}} > 40 \text{ GeV}, Z \rightarrow e^+e^- \text{ veto (requiring } |m_{11} m_Z| > 15 \text{ GeV}), \text{ anti b-tag, } m_{11} > 20 \text{ GeV}$

Fiducial region

- $p_T > 20$ GeV, $|\eta| < 2.5$, for both leptons
- $p_T > 30$ GeV, $|\eta| < 5$ for the two leading jets and $m_{ii} > 500$ GeV, $|\Delta \eta_{ii}| > 2.5$
- Taus decay into leptons are excluded from this definition

- Fiducial region
- $p_T > 20$ GeV, $|\eta| < 2.5$, for both leptons
- $p_T > 30$ GeV, $|\eta| < 5$ for the two leading jets and $m_{ii} > 500$ GeV, $|\Delta \eta_{ij}| > 2.5$
- Taus decay into leptons are excluded from this definition

ssWW+jets: Yields

Fisico P Toritino
INEN

	$\mu^+\mu^+$	e^+e^+	$e^+\mu^+$	$\mu^{-}\mu^{-}$	e ⁻ e ⁻	$e^{-}\mu^{-}$	Total
Data	40	14	63	26	10	48	201
Signal+Total bkg.	44.1 ± 3.4	19.0 ± 1.9	67.6 ± 3.8	23.9 ± 2.8	11.8 ± 1.8	38.9 ± 3.3	204.8 ± 7.2
Signal	18.3 ± 0.4	6.2 ± 0.2	24.7 ± 0.4	6.5 ± 0.2	2.5 ± 0.1	8.7 ± 0.2	66.9 ± 0.7
Total bkg.	25.7 ± 3.4	12.8 ± 1.9	42.9 ± 3.8	17.4 ± 2.8	9.4 ± 1.8	30.2 ± 3.3	137.9 ± 7.1
Non-prompt	18.4 ± 3.3	5.6 ± 1.7	24.9 ± 3.6	14.2 ± 2.8	5.0 ± 1.6	19.9 ± 3.2	87.9 ± 6.9
WZ	4.4 ± 0.2	3.0 ± 0.2	8.5 ± 0.3	2.2 ± 0.1	1.9 ± 0.2	5.2 ± 0.3	25.1 ± 0.6
QCD WW	1.3 ± 0.1	0.6 ± 0.1	1.7 ± 0.1	0.4 ± 0.1	0.2 ± 0.1	0.6 ± 0.1	4.8 ± 0.2
$\mathrm{W}\gamma$	0.2 ± 0.2	1.4 ± 0.5	3.6 ± 0.9	-	0.8 ± 0.4	2.3 ± 0.7	8.3 ± 1.3
Triboson	1.2 ± 0.3	0.8 ± 0.2	2.2 ± 0.4	0.5 ± 0.2	0.3 ± 0.1	0.9 ± 0.3	5.8 ± 0.7
Wrong sign	-	1.5 ± 0.6	1.4 ± 0.4	-	1.1 ± 0.5	1.2 ± 0.4	5.2 ± 1.0

ssWW+jets: charged Higgs limits

Fisica

INFN

	Observed limits	Expected limits	Run-I limits
	(TeV ⁻⁴)	(TeV ⁻⁴)	(TeV ⁻⁴)
f_{S0}/Λ	[-7.7, 7.7]	[-7.0, 7.2]	[-38,40][?]
f_{S1}/Λ	[-21.6,21.8]	[-19.9,20.2]	[-118 , 120] [?]
f_{M0}/Λ	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6 , 4.6] [?]
f_{M1}/Λ	[.19, 1][[-7.9, 8.5]	[-17 , 17] [?]
f_{M6}/Λ	[-11.9,11.8]	[-11.1,11.0]	[-65 , 63] [?]
f_{M7}/Λ	[-13.3,12.9]	[-12.4,11.8]	[-70,66][?]
f_{T0}/Λ	[-0.62,0.65]	[-0.58,0.61]	[-3.8, 3.4] [?]
f_{T1}/Λ	[-0.28,0.31]	[-0.26,0.29]	[-1.9 , 2.2] [?]
f_{T2}/Λ	[-0.89,1.02]	[-0.80,0.95]	[-5.2, 6.4] [?]

- CMS made two beautiful analyses aiming to observe the first evidence of W[±]W[±]jj produced via Electroweak processes at 8 TeV
 - CMS: 114 (2015) 051801
- Production of **WW via photon-photon scattering** at 7 and 8 TeV
 - CMS: JHEP 07 (2013) 116, JHEP 08 (2016) 119

Why VV Scattering

In the symmetry breaking (EWSB) mechanism the **W** and **Z** bosons get their **masses** and acquire a **longitudinal degree of polarization**.

The mechanism responsible for the EWSB has to **regulate the** $V_L V_L \rightarrow V_L V_L$ **cross section** such that the unitarity is preserved above $m_{VV} \sim 1-2$ TeV

VV scattering is the key process to probe EWSB and high energy vector boson scattering will play a central role:

- both as a **test of the Higgs boson nature**
 - If the discovered Higgs boson contributes <u>fully to the EWSB</u>, then most probably the interaction among longitudinal weak bosons would remain <u>weak</u> at high energy
- and as a **model independent research** of alternative theory to explain EWSB
 - if the 125.5 GeV Higgs boson is only partially responsible for the EWSB, then the VV interaction could get <u>strong</u> at high energy.
- Also TGC and QGC processes may carry new physics phenomena

- If the cancellation of the **Higgs diagrams is not complete**, then we expect a g_{HWW} coupling smaller than the SM.
- The $W_1 W_1$ will keep growing with \sqrt{s} , up to the the new resonance, or more generally to the **new physics scale** Λ .
- Suppose the Higgs-WW coupling is $\underset{i\mathcal{M}^{\text{gauge}}}{\text{amplitudes}} = -i \frac{become}{4m_{w}^2} u + \mathcal{O}((E/m_W)^0)$ $i\mathcal{M}^{all} = -i\frac{g^2}{4m_W^2}u(1-\delta) + \mathcal{O}((E/m_W)^0)^{all}$ 'easure with high reference of the second $i\mathcal{M}^{\text{higgs}} = i\frac{g^2}{4m_W^2} u \,\delta + \mathcal{O}((E/m_W)^0)$

HVV coupling and the V_1V_1 scattering

VV Scattering to test the EWSB

R.Bellan

SILH :

7th July 2017 – VV+jets and VBS at CMS

INFN

• Extension of the SM Lagrangian by introducing additional **dimension-8 (or 6) operators**:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \dots$$

desideratum: $\Lambda \sim 1-2$ TeV

- **Effective field theory** is useful as a methodology for studying possible new physics effects from massive particles that are **not directly detectable**.
 - Underlying assumption: scale Λ is large compared with the experimentally-accessible energy
 - These operators have coefficients of inverse powers of mass (Λ), and hence are suppressed if this mass is large compared with the experimentally-accessible energy
 - <u>Limit</u>: Λ so large that the effect is comparable to missing higher order corrections from SM
 - An effective field theory is the **low-energy approximation of the new physics**
- coefficients in **dimension-6** (i.e. c_i/Λ^2) (e.g., hep-ph/9908254), may affects 3 boson vertices too:

- $C_{\phi W}/\Lambda^2$ (VBFNLO), a_0^W/Λ^2 , a_C^W/Λ^2 (CALCHEP)...

• coefficients in **dimension-8** (i.e. c_i/Λ^4) (e.g., hep-ph/0606118), **modifies 4 boson vertices only**:

- Several final states investigated by both Collaborations (ATLAS-PHYS-PUB-2013-006 and CMS-PAS-FTR-13-006) for $\sqrt{s} = 14$ TeV and two luminosity scenarios, 300 fb⁻¹ and 3000 fb⁻¹:
 - − pp → ZZqq → 4ljj (VBS)
 - pp \rightarrow WZqq \rightarrow 3lvjj (VBS)
 - $pp \rightarrow W^{\pm}W^{\pm}qq \rightarrow l^{\pm}\nu l^{\pm}\nu jj (VBS)$
 - $pp \rightarrow Z\gamma\gamma \rightarrow ll\gamma\gamma (QGC)$
- Results interpreted in terms of **Effective Lagrangian**, to estimate the sensitivity to new physics.

$pp \rightarrow WZqq \rightarrow 3lvjj - VBS @ 14 TeV$ -PAS-FTR-13-006

- 300 fb⁻¹ (*Phase 1*) with **50 pile-up** event and **current detector**
- of events)/bin 3000 fb⁻¹ (*Phase 2*) with **140 pile-up** number events and with the **detector upgrad** (new tracker and Ecal, mu-detection down to $\eta < 4$)
- **Typical VBF/VBS cuts:**
 - Lepton $p_T > 20$ GeV, jet $p_T > 50$ GeV, $\Delta \eta(j,j) > 4$, M(jj) > 600 GeV

Significance	3σ	5σ
SM EWK scattering discovery	75 fb ⁻¹	185 fb ⁻¹
f_{T1}/Λ^4 at 300 fb ⁻¹	$0.8 { m TeV^{-4}}$	$1.0 { m TeV^{-4}}$
f_{T1}/Λ^4 at 3000 fb $^{-1}$	$0.45 { m TeV^{-4}}$	0.55 TeV^{-4}

- Needs to simulate all 2 \rightarrow 6 processes at least at the order $\mathcal{O}(\alpha_{EW}^{6})$
- Large interference among same order diagrams
- Signal has to be defined a posteriori, using kinematic cuts arXiv:0801.3359
- Cross Sections for $\sqrt{s} = 14$ TeV from <u>Phantom Monte Carlo Generator</u>: full simulation of $2 \rightarrow 6 @ \mathcal{O}(\alpha_{rm}^{6}) + \mathcal{O}(\alpha_{rm}^{4}\alpha_{cor}^{2})$

		qqqq	ιν/εν		$qqqq\mu\mu/ee$				
	no-Higgs		500 GeV		no-H	iggs	500 GeV		
	σ (pb)	perc.	σ (pb)	σ (pb) perc.		perc.	σ (pb)	perc.	
total	0.689 100%		0.718	100%	0.0305	100%	0.0350	100%	
signal	0.158 23%		0.184	26%	0.0125	41%	0.0165	47%	
top	0.495 72%		0.494	69%	0.0137	45%	0.0137	39%	
non resonant	0.020 3%		0.023	3%	0.0030	10%	0.0035	10%	
three bosons	0.016 2%		0.017	2%	0.0012	4%	0.0014	4%	

	$qq\mu\mu\mu\mu\mu/eeee$				$qq\mu\mu\mu u$				$qq\mu^{\pm} u\mu^{\pm} u$			
	no-Higgs		500 GeV		no-Higgs		500 GeV		no-Higgs		500 GeV	
	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.
total	0.180	100%	0.310	100%	4.182	100%	4.152	100%	4.29	100%	4.16	100%
signal	0.120	66.4%	0.229	74.1%	1.317	31.5%	1.281	30.8%	3.26	76%	3.11	75%
top	0	0%	0	0%	1.817	43.5%	1.828	44.01%	0	0%	0	0%
non resonant	0.0364	20.2%	0.0533	17.2%	0.673	16.1%	0.651	15.7%	0.47	11%	0.46	11%
three bosons	0.0241	13.4%	0.0268	8.66%	0.375	8.9%	0.392	9.5%	0.56	13%	0.58	14%

- The VL are coupled to the Higgs and they are the ones sensitive to the EWSB.
- The behavior of the LL cross section only can give information on the scale at which the symmetry breaks.
- At large M(VV) the TT cross section is of the same order as the LL (in the no-Higgs case)

If there is a new resonance at a scale L, the LL cross section will not decrease until L. Experimentally we should enhance LL wrt TT and measure XS at the highest M(VV)

- The cross section decreases rapidly at high invariant masses due to PDF Hard life for LHC @14 TeV !
- The invariant VV mass is the equivalent of the CM energy of the elastic VV scattering

