Top quark pair production cross-section measurements with the ATLAS detector

> Chris Pollard University of Glasgow

on behalf of the ATLAS Collaboration

overview I

- ATLAS have a comprehensive suite of measurements focusing on top pair production.
- why?
 - sensitivity to BSM physics
 - better Standard Model constraints
 - improve our *modeling* of the Standard Model

ATLAS

overview II

here we'll concentrate on new 8 and 13 TeV results, all of which have unfolded the data to *particle level* where appropriate.

"pseudo-top" fiducial definitions have been used:

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ParticleLevelTopDefinitions

I'll show a number of measurements in a broad range of event topologies.

please follow links for more details!

EPS 2017

ATLAS

inclusive 8 TeV *tt* cross section measurement in the one-lepton channel

- ~70% signal purity
- largest backgrounds: W+jets, single top
- to constrain backgrounds:
 - 3 signal regions (n jets + n tags)
 - neural network with kinematic observable inputs
 - likelihood fit
- · uncertainties becoming competitive with $e\mu$ channel

ATLAS-CONF-2017-054

EPS 2017

ATLAS

Chris Pollard Glasgow

8 TeV *l*+jets inclusive cross section results

 \pm 12.8 (syst.) \pm 4.7 (lumi.) pb

ATLAS

inclusive cross sections at ATLAS

8 TeV inclusive *tt* cross section measurements from ATLAS 7, 8, 13 TeV inclusive *tt* cross section measurements from ATLAS

ATLAS

measurement of lepton differential distributions in *tt* events

- use $e\mu$ events for background rejection
- ~90% signal purity (main background: Wt)
- interpretations:
 - gluon PDF constraints
 - top pole mass (see presentation by Richard Nisius this afternoon)

ATLAS

EPS 2017

ATLAS-CONF-2017-044

Chris Pollard Glasgow

lepton differential distributions

largest uncertainties: MC modeling, lepton ID and trigger

significant discrepancies with data from some generator setups

EPS 2017

ATLAS

Chris Pollard Glasgow

lepton differential distributions: sensitivity to PDF

several observables have sensitivity to choice of PDF!

ATLAS

differential fiducial cross-section measurements at 13 TeV

- $e\mu$ channel: high purity, $\mathcal{O}(95\%)$
- single-lepton channel: more kinematic reach
- all-hadronic channel: no invisibles in final state, still O(80%) purity

ATLAS-CONF-2016-100 ATLAS-CONF-2016-040 Eur. Phys. J. C77 (2017) 299

ATLAS

EPS 2017

Chris Pollard Glasgow

pseudo-top pr

clear shapes from prediction w.r.t. data largest uncertainties: *tt* modeling, *b*-tagging

Chris Pollard Glasgow

ATLAS

resolved and boosted top reconstruction

pseudo-top p_{T} : resolved and boosted

similar features seen using different reconstruction methods large-*R* jet JES uncertainty becomes dominant at high- p_{T}

Chris Pollard Glasgow

observables in the all-hadronic channel

many angular observables in addition to those measured in the 2- and 1-lepton channels

Chris Pollard Glasgow

EPS 2017

ATLAS

summary

- I've shown a small slice of the ATLAS top pair production measurement program.
- please take a look at the full suite of results from these and other measurements:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ TopPublicResults

• more certainly to come!

ATLAS

measurement of lepton differential distributions in *tt* events

Generator	$p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{e+\mu}$	$p_{\rm T}^{e\mu}, m^{e\mu},$	$ \eta^{\ell} , y^{e\mu} $	$ \eta^{\ell} , y^{e\mu} ,$	All
		$p_{\mathrm{T}}^{e+\mu}$		$E^{e+\mu}$	
$N_{ m dof}$	16	26	16	25	69
MCFM + CT14	19.5	29.6	24.2	32.4	73.0
MCFM + MMHT	19.3	29.6	23.4	30.7	72.0
MCFM + NNPDF 3.0	19.9	29.7	20.1	27.4	69.3
MCFM + HERAPDF 1.5	16.1	28.8	21.5	26.1	68.8
MCFM + HERAPDF 2.0	15.3	30.0	22.7	27.4	69.0
MCFM + CT14	0.24	0.28	0.086	0.15	0.35
MCFM + MMHT	0.25	0.28	0.10	0.20	0.38
MCFM + NNPDF 3.0	0.23	0.28	0.22	0.34	0.47
MCFM + HERAPDF 1.5	0.45	0.32	0.16	0.40	0.48
MCFM + HERAPDF 2.0	0.51	0.27	0.12	0.34	0.48

Table 11: χ^2 values (top) and associated probabilities (bottom) for comparison of combinations of measured normalised differential fiducial cross-sections with the predictions of MCFM with various PDF sets. Contributions via $W \rightarrow \tau \rightarrow e/\mu$ decays are not included, and the MCFM predictions have been corrected to include QED final-state radiation effects. The results take into account the uncertainties on both the measurements and predictions.

ATLAS-CONF-2017-044

Chris Pollard Glasgow

EPS 2017

ATLAS

measurement of lepton differential distributions in *tt* events

Table 2	: The seven input variables of the NN, ordered by their discriminating power.
Variable	Definition
m_{12}	The smallest invariant mass between jet pairs.
$\cos(\theta^*)_{bjj}$	Angle between the hadronic top-quark momentum and the beam direction
	in the $t\bar{t}$ rest frame.
$m(\ell \nu b)$	Mass of the reconstructed semileptonically decaying top quark.
А	Aplanarity, as defined in Eq. 6
m(bjj)	Mass of the reconstructed hadronically decaying top quark.
$m_{\ell 1}$	The smallest invariant mass between the charged lepton and a jet.
<i>m</i> ₂₃	The second smallest invariant mass between jet pairs.

ATLAS-CONF-2017-054

Chris Pollard Glasgow **EPS 2017**

ATLAS

measurement of lepton differential distributions in *tt* events

	$p_{\mathrm{T}}(t)$		y(t)		$p_{ m T}(tar{t})$		$ y(tar{t}) $		$m(tar{t})$	
Predictions	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value
Powheg $+$ Pythia 6	5.2/4	0.27	0.5/3	0.92	5.5/6	0.48	0.6/2	0.74	3.9/4	0.42
Powheg $+$ Pythia 8	4.6/4	0.33	1.3/3	0.73	5.1/6	0.53	0.0/2	1.00	5.7/4	0.22
Powheg $+$ Herwig $++$	14.6/4	0.01	1.4/3	0.71	4.1/6	0.66	1.0/2	0.61	12.0/4	0.02
$MG5_aMC@NLO + Herwig++$	2.0/4	0.74	1.3/3	0.73	0.6/6	1.00	0.2/2	0.90	0.9/4	0.92
$MG5_aMC@NLO + Pythia 8$	3.6/4	0.46	0.6/3	0.90	10.7/6	0.10	0.1/2	0.95	2.7/4	0.61
Sherpa	3.8/4	0.43	0.8/3	0.85	0.7/6	0.99	0.0/2	1.00	2.3/4	0.68
Powheg + Pythia 6 $(radHi)$	7.8/4	0.10	0.6/3	0.90	0.9/6	0.99	0.4/2	0.82	3.8/4	0.43
POWHEG $+$ PYTHIA 6 (radLow)	5.5/4	0.24	0.8/3	0.85	9.6/6	0.14	0.8/2	0.67	4.5/4	0.34

Eur. Phys. J. C77 (2017) 299

ATLAS

observables for individual top quarks

ATLAS

observables for the tt system

tt system results

$|\cos\theta^*|$

Chris Pollard Glasgow 22