

Single Top quark production cross section measurements using the ATLAS detector

Muhammad Alhroob

On Behalf of the ATLAS Collaboration

EPS Conference on High Energy Physics 05.07.2017 - 12.07.2017 Venice/Italy

Outline

- Introduction
- t-channel results at 8 TeV using 20.3 fb⁻¹:
 - fiducial and total cross section
 - $R_t \equiv \sigma(tq)/\sigma(\bar{t}q)$
 - differential cross section
- t-channel results at 13 TeV using 3.2 fb⁻¹:
 - total cross section
 - $R_t \equiv \sigma(tq)/\sigma(\bar{t}q)$
- Total tW cross section at 8 TeV using 20.3 fb⁻¹
- Total tW cross section at 13 TeV using 3.2 fb⁻¹
- tZq results at 13 TeV using 36.1 fb⁻¹
- Summary

Introduction

- Tests of SM prediction:
 - cross section $\propto |V_{tb}|^2$
 - test CKM matrix unitarity
 - can constrain PDFs
- Probing new physics
 - charged heavy W', H+
 - access anomalous coupling
- Help tuning MC generators (unfolded distributions)

- Top is the heaviest particle known
- Life time ~ 10-25 s:
 - no hadronisation, study the bare quark
- Decays exclusively to Wb
- Golden t-channel:
 - has the largest cross section
 - has the largest S/B
 - discovered at Tevatron 2009
 - observed at LHC 2011

t-channel at 8 TeV: fiducial

- Signatures:
 - 1 isolated lepton
 - E_T^{miss} from the neutrino
 - 1 high P_T forward jet $|\eta|$ < 4.5
 - 1 high P_T b-tagged jet $|\eta|$ < 2.5
- Dominant backgrounds
 - $t\bar{t}$, W+jets and multi-jets
- Neural network to enhance S/B
- Separate cross section determined for I⁺ and I⁻ events
- Binned maximum likelihood fit to extract cross section

arXiv:1702.02859v2

- Fiducial cross section reduces systematic uncertainties of MC generators
- Fiducial volume define using stable particles selected with cuts very close to the final selection

$$\sigma_{
m fid} = rac{N_{
m fid}}{N_{
m sel}} \cdot rac{\hat{m v}}{L_{
m int}}
ightharpoonup rac{\hat{m v}}{
m of signal \ events}$$

$$\sigma_{\text{fid.}}(tq) = 9.78 \pm 0.57 \text{ pb}$$

 $\sigma_{\text{fid.}}(\bar{t}q) = 5.77 \pm 0.45 \text{ pb}$

 Uncertainties: systematically dominated: jet energy scale, NLO matching choice and lepton reconstruction

t-channel at 8 TeV: total

arXiv:1702.02859v2

Fiducial cross section extrapolated into full phase space to measure the full cross section

$$\sigma_{\text{tot}} = \frac{N_{\text{tot}}}{N_{\text{fid}}}.\sigma_{\text{fid}}$$

$$\sigma_{tq}^{\text{tot}} = 56.7^{+4.3}_{-3.8} \text{ pb}$$

$$\sigma_{tq}^{\text{tot}} = 32.9^{+3.0}_{-2.7} \text{ pb}$$

Total cross section using different MC generators

$$R_t = \frac{\sigma_{tq}}{\sigma_{\bar{t}q}} = 1.72 \pm 0.09$$

Without unitarity assumption

$$|f_{LV}.V_{tb}|^2 = \frac{\sigma(tq+\bar{t}q)_{\text{meas.}}}{\sigma(tq+\bar{t}q)_{\text{pred.}}} = 1.09 \pm 0.048$$

- Left-handed form factor
- In the SM it is exactly 1

t-channel at 8 TeV: differential

arXiv:1702.02859v2

• Select events with $O_{NN} > 0.8$ to enhance signal purity

- Unfolded distributions:
 - P_T(t) and y(t) for top and anti-top at parton level
 - P_T(t), |y(t)|, P_T(j), and |y(j)| for top and antitop at particle level

- Good agreement with the NLO predictions
- Main sources of systematic uncertainties similar to fiducial cross section measurement

t-channel at 13 TeV: total

arXiv:1609.03920

Similar strategy to the 8 TeV analysis

- Total uncertainty 18%(I⁺),20%(I⁻)
- Leading systematics:
 - parton shower (14%)
 - b-tagging efficiency (7%)

$$\sigma_{tq} = 156 \pm 5 ({
m stat.}) \pm 27 ({
m syst}) \pm 3 ({
m lumi}) {
m pb}$$
 $\sigma_{\bar{t}q} = 91 \pm 4 ({
m stat.}) \pm 18 ({
m syst}) \pm 2 ({
m lumi}) {
m pb}$
 $R_t = 1.72 \pm 0.09 ({
m stat.}) \pm 0.18 ({
m syst})$

$$f_{LV}.|V_{tb}| = 1.07 \pm 0.09$$

Rt agrees with PDFs

tW at 8 TeV: total

Signatures:

- 2 opposite sign isolated leptons
- E_T^{miss} from 2 neutrinos
- 1 high P_T b-tagged jet
- Main background: $t\bar{t}$ and Z+jets
- Signal and control regions defined according to number of jets and b-tagged jets
- 3 Separate BDTs used to enhance S/B
- Binned maximum likelihood fit used to extract the cross section from 1 signal and 2 control regions

arXiv:1510.03752

$$\sigma_{tW} = 23.0 \pm 1.3(\text{stat.})^{+3.2}_{-3.5}(\text{syst.}) \pm 1.1(\text{lumi})\text{pb}$$

$$|V_{tb}| = 1.01 \pm 0.10$$

Observed (expected) significance 7.7 σ (6.9 σ)

Leading systematics:

- $t\bar{t}$ normalisation
- jet reconstruction
- ISR/FSR

tW at 13 TeV: total

arXiv:1612.07231

- Similar to the 8 TeV analysis
- 2 separate BDTs trained in two signal regions (1j1b and 2j1b)

- Profile binned likelihood fit used to extract the cross section
- Leading systematics:
 - jet energy scale
 - NLO matrix element
 - jet energy resolution

$$\sigma_{tW} = 94 \pm 10 (\text{stat.})^{+28}_{-22} (\text{syst.}) \pm 2 (\text{lumi.}) \text{pb}$$

significance = $4.5(3.9)\sigma$, observed (expected)

tZq at 13 TeV

ATLAS-CONF-2017-052

Motivation:

- Electroweak process not observed so far (800 fb at 13 TeV)
- Sensitive to tZ and WWZ coupling
- First step on the way to tH measurement
- Trilepton channel is most promising for first observation despite small BR (2.2%)

Event Selection

exactly 3 leptons with $|\eta| < 2.5$ and $p_T > 15 \,\mathrm{GeV}$ $p_T(\ell_1) > 28 \,\mathrm{GeV}, \, p_T(\ell_2) > 25 \,\mathrm{GeV}, \, p_T(\ell_3) > 15 \,\mathrm{GeV}$ $p_T(\mathrm{jet}) > 30 \,\mathrm{GeV}$ $m_T(\ell_W, \nu) > 20 \,\mathrm{GeV}$

SR	Diboson VR / CR	tī VR
≥ 1 OSSF Pair	≥ 1 OSSF Pair	≥ 1 OSSF Pair
$ m_{\ell\ell} - m_Z < 10 \text{GeV}$	$ m_{\ell\ell} - m_Z < 10 \text{GeV}$	$ m_{\ell\ell} - m_Z > 10 \text{GeV}$
$= 2 \text{ jets}, \eta < 4.5$	$= 1 \text{ jet}, \eta < 4.5$	$= 2 \text{ jets}, \eta < 4.5$
= 1 <i>b</i> -jet, $ \eta $ < 2.5		= 1 <i>b</i> -jet, $ \eta $ < 2.5
	CR: $m_{\mathrm{T}}(\ell_W, \nu) > 60 \mathrm{GeV}$	_

Background estimation

- Diboson normalisation calculated using validation region
- $t\bar{t}$ normalisation calculated using datadriven technique
- $t\bar{t}$ +(W/Z): completely estimated by MC
- Z+jets (fakes): totally estimated using datadriven technique

tZq at 13 TeV

New measurement

ATLAS-CONF-2017-052

- Neural network is used to enhance S/B
- 10 variables used as input e.g. η(j),
 P_T(j), m(t), P_T(I^W)

Data collected in 2015 & 2016: 3.2 fb-1+33 fb-1

Channel	Number of events	
	Asimov dataset	Real data
tZq	35 ± 9	26 ± 8
$t\bar{t} + tW$	18 ± 7	17 ± 7
Z + jets	37 ± 11	34 ± 11
Diboson	53 ± 13	48 ± 12
$t\bar{t}V + t\bar{t}H + tWZ$	20 ± 3	19 ± 3
Total	163 ± 12	143 ± 11

S/B=0.3

Input variables are well modelled in the signal and validation regions

tZq at 13 TeV

ATLAS-CONF-2017-052

- Binned maximum likelihood fit used to extract the cross section
- Full NN distribution is used in the fit
- The observed (expected) significance is 4.2σ (5.4σ)

$$\sigma_{tZq} = 600 \pm 170 (\text{stat.}) \pm 140 (\text{syst.}) \text{fb}$$

Source	Uncertainty [%]
tZq radiation	±10.8
Jets	±4.6
Luminosity	±3.2
<i>b</i> -tagging	±2.9
MC statistics	±2.8
Leptons	±2.1
tZq PDF	±1.2
$E_{ m T}^{ m miss}$	±0.3

Summary

- Single top quark production processes are measured at different CME by ATLAS Collaboration
 - comprehensive measurements at 8 TeV
 - good agreement with SM
 - will be used to tune MC generators and PDFs
- ATLAS has clear evidence for the single top quark associated to the Z boson at 13 TeV;
 - The observed (expected) significance is 4.2σ (5.4σ)
 - $\sigma_{tZq} = 600 \pm 170 \text{(stat.)} \pm 140 \text{(syst.)} \text{fb}$
 - good agreement with the SM
 - with the incoming data, the cross section measured will improve