

1

Measurements of Vector Boson Fusion with the ATLAS detector

Kurt Brendlinger On Behalf of the ATLAS Collaboration

EPS Conference on High Energy Physics Venice, Italy 5-12 July 2017

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

K. Brendlinger

Measurements of Vector Boson Fusion with the ATLAS detector

Overview

- Electroweak ("EW") *Wjj* production measurement at 7 and 8 TeV
 - Submitted to EPJC available on $\frac{arXiv}{arXiv}$
 - Observation of electroweak *W*-boson production in the VBF topology
 - Fiducial and (for the first time) differential measurements
 - Focus on variables sensitive to kinematic differences of QCD and EW Wjj production
 - TGC vertex is a probe for new physics beyond the Standard Model
 - Limits on anomalous TGC are set using an aTGC or EFT framework
- EW Zjj production measurement at 13 TeV (3.2 fb⁻¹, 2015 data)
 - Available on arXiv imminently
 - Fiducial cross sections measured in regions enriched with EW Zjj
 - Inclusive cross section measured in six fiducial regions with varying contributions from QCD and EW production

- Two high pr jets with large invaliant
- EW production:
 - W boson inside the rapidity range of two jets
 - No additional jets in the rapidity range between jets (absence of color connection between incoming partons)
- QCD "background":
 - M_{JJ} typically lower than in EW production
 - W boson can be outside the rapidity "gap" of leading jets
 - Additional jet radiation allowed inside rapidity gap between leading jets

Wjj Event Selection, Definition of Fiducial Regions

Centrality: $C_{\ell(j)} \equiv \begin{vmatrix} \frac{y_{\ell(j)} - \frac{y_{1} + y_{2}}{2}}{y_{1} - y_{2}} \\ +0.4 \\ +0.5 \\ j_{et 1} \\ j_{et 1} \\ j_{et 2} \\ -0.5 \\ j_{et 2} \\ -0.5 \\ j_{et 2} \\ -0.5 \\ -0.5 \\ j_{et 2} \\ -0.5$

- Basic *Wjj* ($W \rightarrow \ell v$) selection:
 - 1 triggered lepton ($p_T>25~\mbox{GeV})$
 - $E_{Tmiss} > 20$ GeV, $M_T(\boldsymbol{\ell}, E_{Tmiss}) > 40$ GeV
 - 2 high-p_T jets with $M_{\it JJ} > 500~GeV$
- Discriminate EW from QCD *Wjj* using <u>Jet and Lepton centrality</u>:
 - 1 lepton inside the *dijet rapidity gap*
 - No additional jets inside the rapidity gap
- Control / validation regions defined using lepton and jet centrality
 - Constrain QCD Wjj using forward lepton control region (0 central leptons or jets)
 - Validation region with ≥ 1 central jet, 1 central lepton

EW Wjj Measurement Method

- QCD- and EW-*Wjj* fractions are obtained using fit to the *M_{JJ}* spectrum with MC
 - QCD MC suffers from mismodeling in *M*_{JJ} spectrum; constrained using forward lepton control region
- Other backgrounds:
 - Multijet production, constrained using data-driven techniques
 - Top quarks, Zjj, dibosons (modeled using MC)

K. Brendlinger

- EW *Wjj* production measured at 7 and 8 TeV in the signal region $(M_{JJ} > 0.5 \text{ TeV})$
 - 24% uncertainty in 7 TeV measurement
 - 18% uncertainty in 8 TeV measurement
- QCD+EW Wjj measured in inclusive regions (no C_j or C_e requirements) and control regions

Measured EW *Wjj* production (M_{JJ}>0.5 TeV)

Differential Cross Section Measurements

- Differential measurements are made for <u>QCD+EW *Wjj*</u> (in inclusive signal regions) as well as <u>EW-only *Wjj*</u> in high-M_{JJ} regions
 - For EW-only differential definitions, QCD normalization factor measured earlier
- Focus on differential distributions that discriminate between QCD and EW Wjj production
 - MJJ, CJ, Ce, $\Delta y(j_1, j_2)$, N_{j,gap}
- Also differential distributions with sensitivity to anomalous TGCs
 - $p_{Tj1}, p_{Tjj}, \Delta \phi(j_1, j_2)$

		$\Lambda =$	4 TeV	$\Lambda = \infty$		
		Expected	Observed	Expected	Observed	
	Δg_1^Z	[-0.39, 0.35]	[-0.32, 0.28]	[-0.16, 0.15]	[-0.13, 0.12]	
	$\Delta \kappa_Z$	$\left[-0.38, 0.51\right]$	[-0.29, 0.42]	$\left[-0.19, 0.19\right]$	[-0.15, 0.16]	
_	λ_V	[-0.16, 0.12]	$\left[-0.13, 0.090\right]$	$\left[-0.064, 0.054 ight]$	$\left[-0.053, 0.042 ight]$	
CP-	$ ilde{\kappa}_Z$	[-1.7, 1.8]	[-1.4, 1.4]	[-0.70, 0.70]	[-0.56, 0.56]	
Violating	$ ilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	$\left[-0.058, 0.057 ight]$	$\left[-0.047, 0.046\right]$	

- Anomalous coupling measurements performed in high-q² region
 - $M_{JJ} > 1$ TeV, $p_{T,j1} > 600$ GeV
- Sensitive differential variables:
 - p_{Tj1} , p_{Tjj} , $\Delta \phi(j_1, j_2)$ (CP-violating couplings)
- Limits placed on aTGC effective Lagrangian couplings, as well as on EFT parameters

Theoretical predictions with aTGC parameters set to +10% from SM predictions

Zjj @ 13 TeV: Event Selection

Electroweak *Zjj* production (Signal)

Strong (QCD) *Zjj* production (Background)

- Measurement at 13 TeV using 3.2 fb⁻¹ of data collected in 2015
- QCD+EW Zjj production measured in 4 fiducial regions
- EW-only *Zjj* production measured in 2 regions designed to enhance EW signal:
 - High dijet M_{JJ} (either $M_{JJ} > 250$ GeV or $M_{JJ} > 1$ TeV)
 - A central jet veto to suppress QCD production
- EW-only measurement: Fit EW and QCD Zjj components in the M_{JJ} distribution

Signal Selection

- 2 same-flavor leptons; $m_{\ell\ell}$ required to be within 10 GeV of PDG Z mass
- "Baseline jets" require |y| < 4.4, $p_{Tj1} > 55$ GeV, $p_{Tj2} > 45$ GeV
 - Other fiducial regions have higher p_{T} thresholds
- Balance of object momenta: p_{T,balance} < 0.15
 - Reduces backgrounds with jets from pile-up or multiple interactions
- EW *Zjj* regions: Central Jet Veto
 - No jet (p_T>25 GeV) in the rapidity region bounded by 2 leading jets
 - A QCD-enriched region requiring \geq 1 jet in this region is used to correct the QCD component

Constraining QCD with a data-driven approach

- QCD modeling of M_{JJ} is imperfect in EW-enriched region and QCD-enriched control region
- Use QCD-enriched control region to derive a linear data-MC M_{JJ} correction factor
- Resulting corrected QCD M_{JJ} distribution is used in fit to determine EW Zjj

Extraction of EW Zjj Fiducial Cross Section

- Corrected QCD Zjj distribution is normalized via a log-likelihood fit of QCD and EW Zjj simulation in the M_{JJ} distribution
- EW Zjj fiducial cross section is calculated using:

$$\sigma_{\rm EW}^{f} = \frac{N_{\rm obs}^{f} - N_{\rm QCD-Zjj}^{f} - N_{\rm bkg}^{f}}{L \cdot C_{\rm EW}^{f}}$$

• ...with other backgrounds subtracted using simulation predictions, and a correction factor C^{f}_{EW} to correct for detector-level efficiency and resolution effects (*L* is luminosity)

Measurements of Vector Boson Fusion with the ATLAS detector

Results – Zjj

EW-enriched	EW-Zjj cross-sections [fb]			
Fiducial Region	Measured	Powheg+Pythia		
$m_{jj} > 250 \text{ GeV}$	$119 \pm 16 \pm 20 \pm 2$	125.2 ± 3.4		
$m_{jj} > 1 \text{ TeV}$	$34.2 \pm 5.8 \pm 5.5 \pm 0.7$	38.5 ± 1.5		

- Results of QCD+EW Zjj fiducial measurements compared to leading MC predictions in all 6 fiducial regions
- EW-only Zjj cross sections measured in 2 enriched fiducial regions
 - Compatible with SM predictions
- EW production increase vs c.o.m. energy well-predicted by MC

Summary and Conclusions

Preliminary *Zjj* 13 TeV ATLAS results

- Wjj results at 7 and 8 TeV with small relative uncertainties
 - First differential cross section measurements of EW Wjj production
- Preliminary Zjj result begins the process of extending Electroweak production physics to higher-energy regimes

BACKUP

Measurements of Vector Boson Fusion with the ATLAS detector

	Fiducial region						
Object	Baseline	High-mass	High- <i>p</i> _T	EW-enriched	EW-enriched, $m_{jj} > 1$ TeV	QCD-enriched	
Leptons	$ \eta < 2.47, p_{\rm T} > 25$ GeV, $\Delta R_{j,\ell} > 0.4$						
Dilepton pair	$81 < m_{\ell\ell} < 101 \text{ GeV}$						
				$p_{\mathrm{T}}^{\ell\ell} > 20 \ \mathrm{GeV}$			
	<i>y</i> < 4.4						
Jets	$p_{\rm T}^{j_1} > 55 { m GeV} \qquad p_{\rm T}^{j_1}$		$p_{\mathrm{T}}^{j_1} > 85 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{j_1} > 55 \; \mathrm{GeV}$			
	$p_{\rm T}^{j_2} > 45 \; { m GeV} \qquad p_{\rm T}^{j_2} > 75 \; { m GeV}$			$p_{\mathrm{T}}^{j_2} > 45 \; \mathrm{GeV}$			
Dijet system		$m_{jj} > 1 \text{ TeV}$		$m_{jj} > 250 \text{ GeV}$	$m_{jj} > 1 \text{ TeV}$	$m_{jj} > 250 \text{ GeV}$	
Interval jets			$N_{\text{jet }(p_{\text{T}}>25 \text{ GeV})}^{\text{interval}} = 0$		$N_{\text{jet }(p_{\text{T}}>25 \text{ GeV})}^{\text{interval}} \ge 1$		
Zjj system				$p_{\rm T}^{\rm balance} < 0.15$		$p_{\rm T}^{\rm balance,3} < 0.15$	

	Composition [%]					
Process	Baseline	High-mass	High-p _T	EW-enriched	EW-enriched,	QCD-enriched
					$m_{jj} > 1 \text{ TeV}$	
QCD-Zjj	94.2 ± 0.4	86.8 ± 1.6	92.3 ± 0.4	93.4 ± 0.9	72.9 ± 2.1	95.4 ± 0.8
EW-Zjj	$1.5 \pm < 0.1$	10.6 ± 0.2	$2.6 \pm < 0.1$	$4.8 \pm < 0.1$	26.1 ± 0.5	$1.6 \pm < 0.1$
Diboson	$1.6 \pm < 0.1$	1.5 ± 0.1	$2.0 \pm < 0.1$	$1.0 \pm < 0.1$	0.8 ± 0.1	$1.8 \pm < 0.1$
$t\overline{t}$	$2.6 \pm < 0.1$	1.1 ± 0.1	3.1 ± 0.1	$0.7 \pm < 0.1$	0.1 ± 0.1	1.2 ± 0.1
Single- <i>t</i>	< 0.2	< 0.2	< 0.2	< 0.1	< 0.1	< 0.1
W+jets	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Multijet	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Total expected	64800	2220	21900	11100	640	7120
	$\pm 130 \pm 5220$	$\pm 20 \pm 200$	$\pm 40 \pm 1210$	$\pm 50 \pm 520$	$\pm 10 \pm 40$	$\pm 30 \pm 880$
Total observed	67472	1471	22461	11630	490	6453