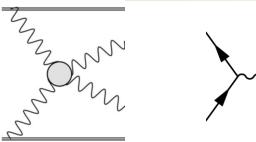
Vector Boson Scattering, Triple Gauge-Boson Final States and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector

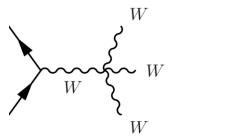
<u>Bing Li</u>

On behalf of the ATLAS Collaboration

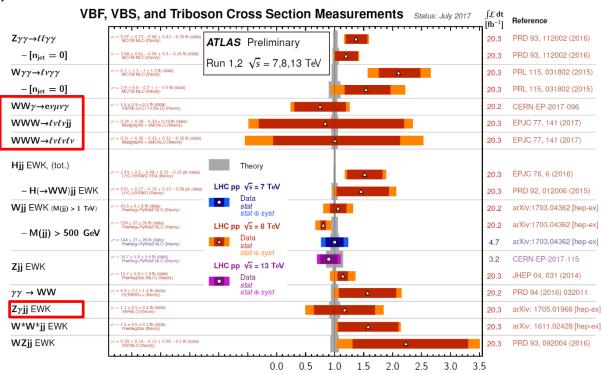
The University of Michigan,
University of Science and Technology of China

EPS-HEP 2017, Venice, Italy July 7th, 2017

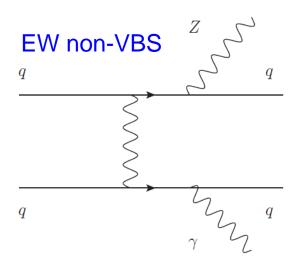

Outline

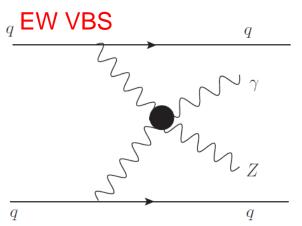

- Physics motivation
- * VBS final states
 - * Zγ + 2jets
- * Tri-boson final states
 - * WWW
 - * $WV\gamma (V = W, Z)$
- Summary

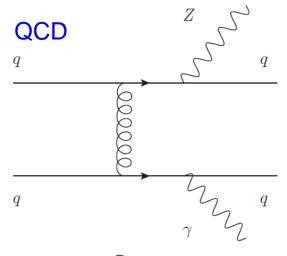
* Results with 20.2 fb⁻¹, 8 TeV dataset

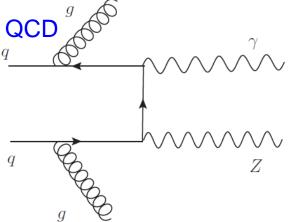

Physics Motivation

- Vector Boson Scattering (VBS) is a key process to probe the mechanism of electroweak symmetry breaking (EWSB)
- Triboson final state provides another way to test QGC vertex
- Involving Quartic Gauge Couplings (QGCs)
 which is sensitive to new physics
 - * Only charged QGCs allowed at Standard Model (SM) tree-level (WWWW, WWZZ, WWZγ, WWγγ)
 - Constraint on aQGCs
 - Probe new physics through deviations from SM






data/theory



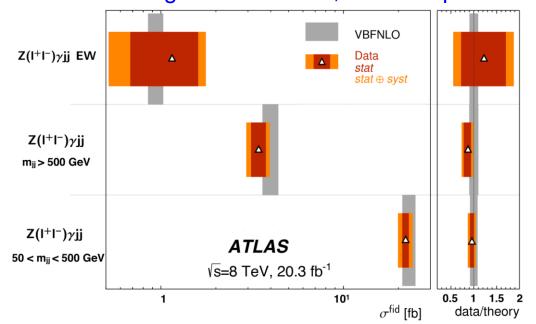
VBS: Zγ + 2jets

- \checkmark Z \rightarrow leptons/neutrinos
- ✓ Dominant background
 - ✓ Charged-lepton channel: Z+jets, with jets faking photons
 - ✓ Neutrino channel: $W(lv)\gamma$ + jets

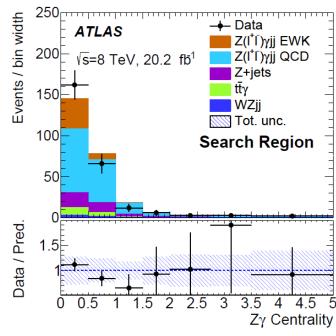
arXiv:1705.01966

VBS: Event Selections

Charged-lepton channel


- ✓ Isolated electron, muon and photon
- ✓ Two same-flavor, opposite-sign leptons
- ✓ At least two jets with large rapidity difference
- √ m_{||} > 40 GeV
- \checkmark m_{||} + m_{|| γ} > 182 GeV to reduce Final State Radiation (FSR)

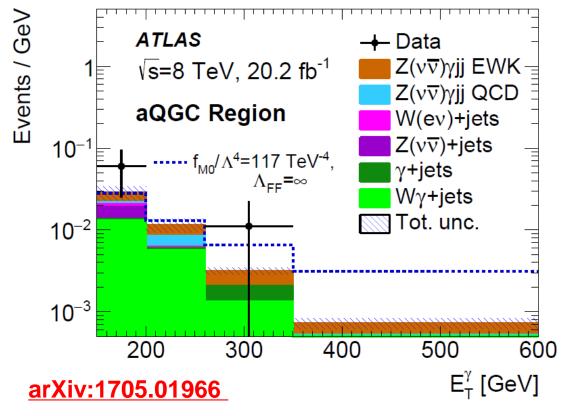
Neutrino channel


- √ Missing E_T > 100 GeV
- ✓ Photon $E_T > 150 \text{ GeV}$
- ✓ At least two jets with large rapidity difference
- ✓ Lepton veto to reduce $W(Iv)\gamma$ + jets
- ✓ Event level topology cut to suppress γ + jets and W(ev) + jets
- ✓ Search region: m_{jj} > 500 GeV to study EWK Zγ + 2jets production and measure the combined cross sections of QCD+EWK
- ✓ aQGC region: m_{jj} > 500 GeV and E_T^y > 250 (150) GeV optimized for sensitivity to aQGC for charged-lepton (neutrino) channel and measure the combined cross sections of QCD+EWK

VBS: Cross-section Measurements

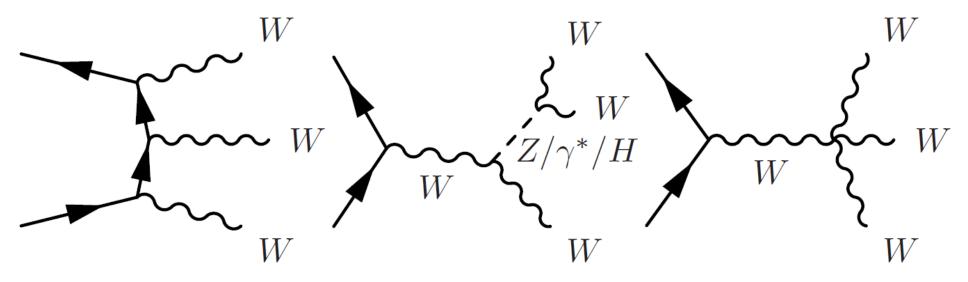
- * A fit to the centrality is used to extract the cross sections of EWK and QCD processes in search region, in the charged-lepton channel
 - ✓ Expected significance: 1.8σ, for EWK production
 - ✓ Observed significance: 2.0σ, for EWK production

arXiv:1705.01966



$$\zeta \equiv \left| \frac{\eta - \bar{\eta}_{jj}}{\Delta \eta_{jj}} \right| \text{ with } \bar{\eta}_{jj} = \frac{\eta_{j_1} + \eta_{j_2}}{2}, \quad \Delta \eta_{jj} = \eta_{j_1} - \eta_{j_2}$$

VBS: aQGCs


- * aQGC optimized region is defined with further $E_T^{\gamma} > 250$ (150) GeV cut for charged-lepton (neutrino) channel
- ✓ Better expected limit from neutrino channel
- ✓ Improved by 10-30% if combined with charged-lepton channel

	Limits 95% CL	Measured $[\text{TeV}^{-4}]$	Expected [TeV ⁻⁴]
	f_{T9}/Λ^4	[-3.9, 3.9]	[-2.7, 2.8]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-1.3, 1.3]
	f_{T0}/Λ^4	[-3.4, 2.9]	[-3.0, 2.3]
ATLAS $Z(\to \ell\bar{\ell}/\nu\bar{\nu})\gamma$ -EWK	f_{M0}/Λ^4	[-76, 69]	[-66, 58]
	f_{M1}/Λ^4	[-147, 150]	[-123, 126]
	f_{M2}/Λ^4	[-27, 27]	[-23, 23]
	f_{M3}/Λ^4	[-52, 52]	[-43, 43]
	f_{T9}/Λ^4	[-4.0, 4.0]	[-6.0, 6.0]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-2.7, 2.7]
CMS $Z(\to \ell \bar{\ell}) \gamma$ -EWK	f_{T0}/Λ^4	[-3.8, 3.4]	[-5.1, 5.1]
	f_{M0}/Λ^4	[-71, 75]	[-109, 111]
	f_{M1}/Λ^4	[-190, 182]	[-281, 280]
	f_{M2}/Λ^4	[-32, 31]	[-47, 47]
	f_{M3}/Λ^4	[-58, 59]	[-87, 87]
	f_{T0}/Λ^4	[-5.4, 5.6]	[-3.2, 3.4]
	f_{M0}/Λ^4	[-77, 74]	[-47, 44]
CMS $W(\to \ell\nu)\gamma$ -EWK	f_{M1}/Λ^4	[-125, 129]	[-72, 79]
	f_{M2}/Λ^4	[-26, 26]	[-16, 15]
	f_{M3}/Λ^4	[-43, 44]	[-25, 27]

Triboson: WWW

$$W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu\ell^{\mp}\nu$$
 and $W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu jj$

LO processes

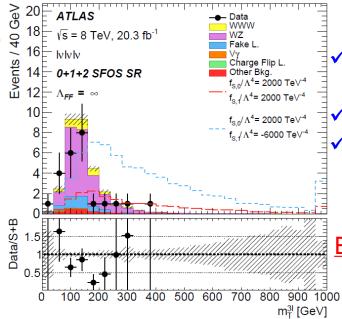
Dominant background from WZ/γ^* + jets process

Eur. Phys. J. C 77 (2017) 141

WWW: Event Selections

Split based on number of same-flavor, opposite-sign lepton (SFOS) pairs

<i>ℓνℓνℓν</i>	0 SFOS	1 SFOS	2 SFOS	
Preselection	Exactly three charged leptons with $p_T > 20 \text{ GeV}$			
$E_{ m T}^{ m miss}$	-	$E_{\rm T}^{\rm miss} > 45~{ m GeV}$	$E_{\rm T}^{\rm miss} > 55~{\rm GeV}$	
Same-flavour dilepton mass	$m_{\ell\ell} > 20 \text{ GeV}$		-	
Angle between trilepton and $\vec{p}_{\rm T}^{\rm miss}$		$ \phi^{3\ell} - \phi^{\vec{p}_{\mathrm{T}}^{\mathrm{miss}}} > 2.5$		
		$m_Z - m_{SFOS} > 35 \text{ GeV}$		
Z boson veto	$ m_{ee} - m_Z > 15 \text{ GeV}$	or	$ m_{\rm SFOS} - m_Z > 20 \text{ GeV}$	
		$m_{\rm SFOS} - m_{\rm Z} > 20 \text{ GeV}$		
Jet veto	At most one jet with $p_T > 25$ GeV and $ \eta < 4.5$			
<i>b</i> -jet veto	No identifie	No identified <i>b</i> -jets with $p_T > 25$ GeV and $ \eta < 2.5$		

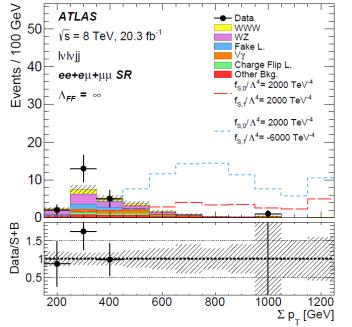

Split based on lepton flavor

$\ell \nu \ell \nu j j$	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	
Lepton	Exactly two same-charge leptons with $p_T > 30 \text{ GeV}$			
Jets	At least two jet	s with $p_{\rm T}(1) > 30 \text{ GeV}, p_{\rm T}$	$\gamma(2) > 20 \text{ GeV and } \eta < 2.5$	
$m_{\ell\ell}$		$m_{\ell\ell} > 40 \text{ GeV}$		
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 55~{\rm GeV}$			
m_{jj}	$65 \text{ GeV} < m_{jj} < 105 \text{ GeV}$			
$\Delta \eta_{jj}$	$ \Delta \eta_{jj} < 1.5$			
Z boson veto	$m_{ee} < 80 \text{ GeV or}$ $m_{ee} > 100 \text{ GeV}$			
Third-lepton veto	No third lepton with $p_T > 6$ GeV and $ \eta < 2.5$ passing looser identification			
	requirements			
<i>b</i> -jet veto	No ide	ntified b -jets with $p_{\rm T} > 25$	5 GeV and $ \eta < 2.5$	

Same-sign channel has much better Drell-Yan suppression

WWW: Cross-section Measurements

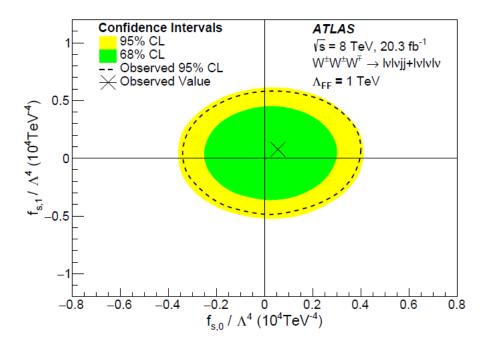
- Prediction agrees with observed data in all 6 signal regions
- Observed (expected) significance of a positive signal is 0.96σ (1.05σ), combining all channels (mostly from 0-SFOS and μμ channel)

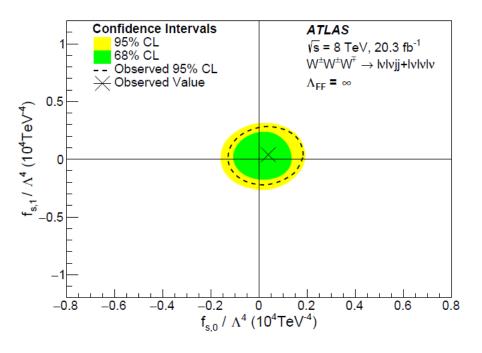


✓ Contributions from aQGCs also shown in plots

✓ Non-unitarized case $(\Lambda_{FF} = \infty)$

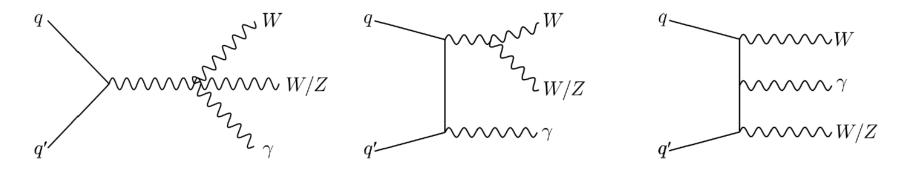
✓ Two different sets of f_{S,0}/Λ⁴ and f_{S,1}/Λ⁴ configurations


Eur. Phys. J. C 77 (2017) 141



		Cross section [fb]		
		Theory	Observed	
Fiducial	$\ell \nu \ell \nu \ell \nu$	$0.309 \pm 0.007 \text{ (stat.)} \pm 0.015 \text{ (PDF)} \pm 0.008 \text{ (scale)}$	$0.31^{+0.35}_{-0.33}$ (stat.) $^{+0.32}_{-0.35}$ (syst.)	
	$\ell \nu \ell \nu j j$	$0.286 \pm 0.006 \text{ (stat.)} \pm 0.015 \text{ (PDF)} \pm 0.010 \text{ (scale)}$	$0.24^{+0.39}_{-0.33}$ (stat.) $^{+0.19}_{-0.19}$ (syst.)	
Tot	al	$241.5 \pm 0.1 \text{ (stat.)} \pm 10.3 \text{ (PDF)} \pm 6.3 \text{ (scale)}$	$230 \pm 200 \text{ (stat.)} ^{+150}_{-160} \text{ (syst.)}$	

WWW: aQGCs


 aQGC events generated with VBFNLO at LO and scaled to NLO prediction

Eur. Phys. J. C 77 (2017) 141

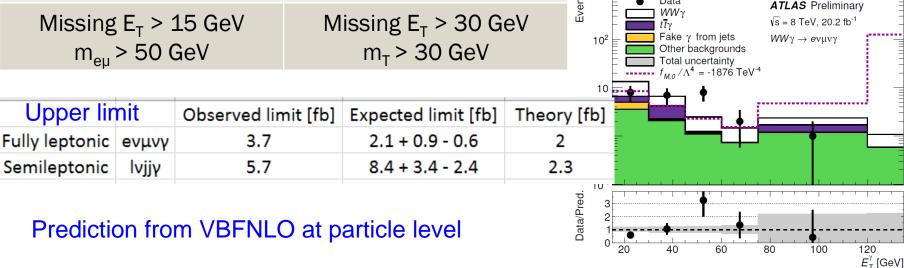
Triboson: $WV\gamma (V = W, Z)$

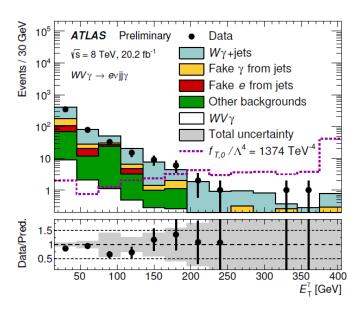
Produced through QGC

Produced through radiation

Fully leptonic channel and semi-leptonic channel

- \checkmark Dominant background for leptonic channel: $t\bar{t}\gamma$
- ✓ Dominant background for semi-leptonic channel: Wy* + jets


STDM-2016-05


WVy: Cross-section Measurements

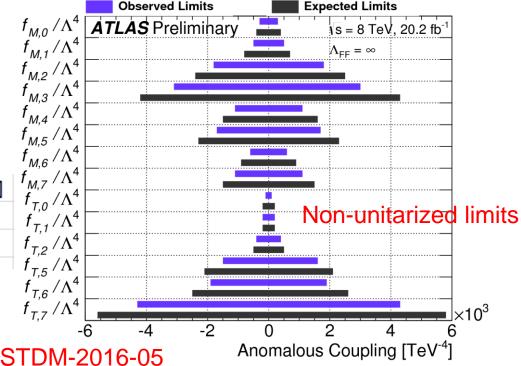
ενμνγ	l∨jjγ
1 electron and 1 muon Opposite charge	1 electron or 1 muon
No 3 rd lepton	No 2 nd lepton
At least 1 iso	lated photon
0 jet	At least 2 jets, 0 b-jet
Missing E _T > 15 GeV m _{eµ} > 50 GeV	Missing E _T > 30 GeV m _T > 30 GeV

- ✓ Fiducial cross section measured in fully leptonic channel
- ✓ Expected significance: 1.6σ
- ✓ Observed significance: 1.4σ

$$\sigma_{\rm fid}^{e\nu\mu\nu\gamma} = (1.5 \pm 0.9({\rm stat.}) \pm 0.5({\rm syst.}))\,{\rm fb}$$

STDM-2016-05

July 6, 2017 Bing Li 13


WVγ: aQGCs

* Optimized fiducial region defined for aQGCs and search for new physics by increasing photon E_T cut ($E_T > 120$ GeV for fully leptonic analysis, $E_T > 200$ GeV for semi-leptonic

analysis)

Upper limits

		Observed limit [fb]	Expected limit [fb]	Theory [fb]
Fully leptonic	ενμνγ	0.3	0.3 + 0.3 - 0.1	0.076
Semileptonic	lvjjγ	0.9	0.9 + 0.3 - 0.2	0.054

July 6, 2017 Bing Li 14

Summary

- Recent ATLAS results for VBS, Triboson and aQGCs
- Limit set on cross-sections and compared with NLO SM predictions
- Limits set on aQGC parameters modelled by dimension-8 operators

 Will benefit from Run 2 data for VBS/Triboson cross-section measurements and aQGC limits

backup

aQGC

* Effective operators approach

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

Three types of dimension-8 operators

* Scalar: S0, S1, S2

* Tensor: T0 - T9

* Mixed: MO - M7

Michael Rauch, arxiv:1610.08420

O. J. P. Eboli, M. C. Gonzalez-Garcia, arXiv:1604.03555

	$\mathcal{O}_{S,1},$	$\mathcal{O}_{M,0},$ $\mathcal{O}_{M,1},$ $\mathcal{O}_{M,7}$	$\mathcal{O}_{M,2},$ $\mathcal{O}_{M,3},$ $\mathcal{O}_{M,4},$ $\mathcal{O}_{M,5}$	$\mathcal{O}_{T,0},$ $\mathcal{O}_{T,1},$ $\mathcal{O}_{T,2}$	$\mathcal{O}_{T,5},$ $\mathcal{O}_{T,6},$ $\mathcal{O}_{T,7}$	$\mathcal{O}_{T,8},$ $\mathcal{O}_{T,9}$
\overline{WWWW}	X	X		X		
WWZZ	X	X	X	X	X	
ZZZZ	X	X	X	X	X	X
$WWZ\gamma$		X	X	X	X	
$WW\gamma\gamma$		X	X	\mathbf{X}	X	
$ZZZ\gamma$		X	X	X	X	X
$ZZ\gamma\gamma$		X	X	\mathbf{X}	\mathbf{X}	\mathbf{X}
$Z\gamma\gamma\gamma$				\mathbf{X}	\mathbf{X}	\mathbf{X}
$\gamma\gamma\gamma\gamma$				X	X	X

Zγ + 2jets: Particle/Parton Level Event Selections

Charged-lepton channel phase-space region definitions

Particle- (Parton-) level selection Objects $p_{\rm T}^{\ell} > 25 \; {\rm GeV} \; {\rm and} \; |\eta^{\ell}| < 2.5$ Leptons Dressed leptons, OS charge $E_{\rm T}^{\gamma} > 15 \text{ GeV}, |\eta^{\gamma}| < 2.37$ Photon (kinematics) $\Delta R(\ell, \gamma) > 0.4$ $E_{\rm T}^{\rm iso} < 0.5 \cdot E_{\rm T}^{\gamma}$ (no isolation) Photon (isolation) FSR cut $m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$ $m_{\ell\ell} > 40 \text{ GeV}$ Particle jets (Outgoing partons) At least two jets (outgoing partons) $E_{\rm T}^{j(p)} > 30 \text{ GeV}, |\eta^{j(p)}| < 4.5$ (j = jets) $\Delta R(\ell, j(p)) > 0.3$ (p = outgoing quarks or gluons) $\Delta R(\gamma, j(p)) > 0.4$

Neutrino channel

Objects	Particle- (Parton-) level selection
Neutrinos	$E_{\rm T}^{\nu\bar{\nu}} > 100 \text{ GeV}$
Photon (kinematics)	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta^{\gamma} < 2.37$
	$\Delta R(\ell, \gamma) > 0.4$
Photon (isolation)	$E_{\mathrm{T}}^{\mathrm{iso}} < 0.5 \cdot E_{\mathrm{T}}^{\gamma}$
Generator-level jets (Outgoing quarks)	At least two jets (quarks)
$(pp \to Z\gamma qq)$	$E_{\rm T}^{j(q)} > 30 \text{ GeV}, \eta^{j(q)} < 4.5$
	$\Delta R(\gamma, j(q)) > 0.4$
Event kinematic	$ \Delta\phi(E_{\mathrm{T}}^{\nu\bar{\nu}},\gamma jj(qq)) > \frac{3\pi}{4}$
selection	$ \Delta \phi(E_{\mathrm{T}}^{ uar{ u}}, \gamma) > \frac{\pi}{2}$
	$ \Delta \phi(E_{\mathrm{T}}^{\nu\bar{\nu}}, j(q)) > 1$
	$E_{\rm T}^{\gamma} > 150~{\rm GeV}$
	$ \Delta y_{jj(qq)} > 2.5$
	$\zeta_{\gamma} < 0.3$
	$p_{\rm T}^{\rm balance} < 0.1$
	$m_{jj(qq)} > 600 \text{ GeV}$

Zγ + 2jets: Systematic Uncertainties

Table 6: Summary of the main relative uncertainties in cross-section measurements presented in this paper.

Source of	EWK [%]	Tota	[%] [WK+QCD]
uncertainty		SR	CR
Statistical	40	9	4
Jet energy scale	36	9	4
Theory	10	5	4
All other	8	5	6
Total systematic	38	11	8

WWW: Systematic Uncertainties

Table 4: The effect of the various systematic uncertainties on the total signal and background yields (in percent) for both channels.

	$\ell \nu \ell \nu \ell \nu$		$\ell \nu \ell \nu j j$	
Source of Uncertainty	Signal [%]	Background [%]	Signal [%]	Background [%]
Lepton ID, E_T/p_T scale and resolution	1.6	1.8	2.1	3.3
$E_{\mathrm{T}}^{\mathrm{miss}}$ modelling	1.1	1.4	0.7	1.8
b-jet identification	0.3	0.3	2.2	2.2
Jet $E_{\rm T}$ scale and resolution	2.3	2.8	21	15
Fake-lepton background	0	13	0	8
Charge-flip background	0	0.04	0	2.2
Luminosity	1.9	1.6	1.9	1.4
Pile-up estimate	1.1	0.6	0.6	1.6
Trigger efficiency	0.1	0.1	0.1	0.01
Normalization factor	3.8	8	6.0	13
Statistical	1.2	3.2	2.7	5.1

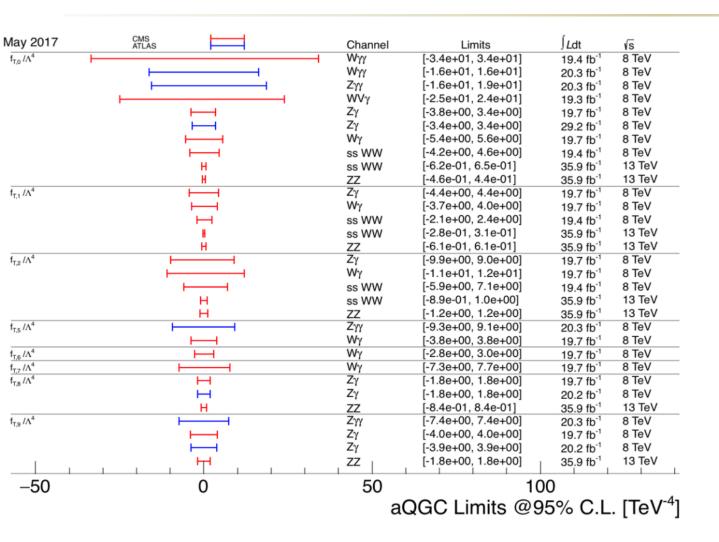
WVy: Event Selections

	eνμνγ	$\ell u j j \gamma$
Leptons	1 electron and 1 muon $p_{\rm T} > 20 {\rm GeV}$ no $3^{\rm rd}$ lepton $(p_{\rm T} > 7 {\rm GeV})$ $ \eta < 2.5$ opposite charge leptons $\Delta R(\ell,\ell) > 0.1$	1 electron or 1 muon $p_{\rm T} > 25~{\rm GeV}$ no $2^{\rm nd}$ lepton $(p_{\rm T} > 7~{\rm GeV})$ $ \eta < 2.5$
Photon	≥ 1 isola	ted photon
	-	15 GeV
	isolation fra	ction $\epsilon_h^P < 0.5$
	$ \eta < 2.37$	
	$\Delta R(\ell, \ell)$	γ) > 0.5
Jets	$N_{\rm jets} = 0$	$N_{\rm jets} \ge 2$ and $N_{b-\rm jets} = 0$
	$p_{\rm T} > 25 {\rm GeV}$	$p_{\rm T} > 25 {\rm GeV}$
	y < 4.4	$ \eta < 2.5$
		$ \Delta \eta_{jj} < 1.2$
		$\Delta R_{jj} < 3.0$
		$70\text{GeV} < m_{jj} < 100\text{GeV}$
	$\Delta R(\text{jet}, \gamma) > 0.5$	$\Delta R(\text{jet}, \gamma) > 0.5$
	$\Delta R(\text{jet}, \ell) > 0.3$	$\Delta R(\text{jet}, \ell) > 0.3$
W boson	$E_{\rm T, rel}^{\rm miss} > 15 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 30{\rm GeV}$
	$m_{e\mu} > 50 \mathrm{GeV}$	$m_{\rm T} > 30 {\rm GeV}$

CMS limit

CMS-PAS-SMP-13-009

Observed Limits	Expected Limits
$-77 \text{ (TeV}^{-4}) < f_{M,0} / \Lambda^4 < 81 \text{ (TeV}^{-4})$	$-89 (TeV^{-4}) < f_{M,0} / \Lambda^4 < 93 (TeV^{-4})$
$-131 \text{ (TeV}^{-4}) < f_{M,1} / \Lambda^4 < 123 \text{ (TeV}^{-4})$	$-143 (TeV^{-4}) < f_{M,1} / \Lambda^4 < 131 (TeV^{-4})$
$-39 (TeV^{-4}) < f_{M,2} / \Lambda^4 < 40 (TeV^{-4})$	$-44 (TeV^{-4}) < f_{M,2} / \Lambda^4 < 46 (TeV^{-4})$
$-66 \text{ (TeV}^{-4}) < f_{M,3} / \Lambda^4 < 62 \text{ (TeV}^{-4})$	$-71 \text{ (TeV}^{-4}) < f_{M,3} / \Lambda^4 < 66 \text{ (TeV}^{-4})$


ATLAS/CMS limit

CMS EWK ss WW $\rightarrow \ell^+ \ell^- \ell^+ \ell^- qq$: using 19.4 fb⁻¹ of 8 TeV pp collisions Phys. Rev. Lett. 114, 051801 (2015) CMS $VW\gamma \rightarrow jj\ell\bar{\nu}\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys. Rev. D 90, 032008 (2014) CMS $\gamma\gamma \rightarrow W^+W^- \rightarrow e^+\mu^-$ scattering with 5.0 fb⁻¹ of 7 TeV and 19.7 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP CMS EWK qq $\rightarrow Z\gamma qq \rightarrow \ell^+\ell^-\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-018 CMS EWK qq $\rightarrow W\gamma qq \rightarrow \ell^+\nu\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-011 CMS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ and $Z\gamma\gamma \rightarrow \ell^+\ell^-\gamma\gamma$ triboson production with 19.4 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP CMS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys.Rev.Lett. 115 (2015) 3, 031802 CMS

July 6, 2017 Bing Li 23

ATLAS/CMS limit

CMS EWK ss WW $\rightarrow \ell^{+/-}\ell^{+/-}$ qq: using 19.4 fb⁻¹ of 8 TeV pp collisions Phys. Rev. Lett. 114, 051801 (2015) $^{\circ}_{\mathscr{Q}}$ CMS $VW\gamma \rightarrow jj\ell\bar{\nu}\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys. Rev. D 90, 032008 (2014) $^{\circ}_{\mathscr{Q}}$ CMS $\gamma\gamma \rightarrow W^{+}W^{-} \rightarrow e^{+}\mu^{-}$ scattering with 5.0 fb⁻¹ of 7 TeV and 19.7 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP $^{\circ}_{\mathscr{Q}}$ CMS EWK qq $\rightarrow Z\gamma qq \rightarrow \ell^{+}\ell^{-}\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-018 $^{\circ}_{\mathscr{Q}}$ CMS EWK qq $\rightarrow W\gamma qq \rightarrow \ell^{+}\nu\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-011 $^{\circ}_{\mathscr{Q}}$ CMS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ and $Z\gamma\gamma \rightarrow \ell^{+}\ell^{-}\gamma\gamma$ triboson production with 19.4 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP $^{\circ}_{\mathscr{Q}}$ ATLAS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys.Rev.Lett. 115 (2015) 3, 031802 $^{\circ}_{\mathscr{Q}}$

July 6, 2017 Bing Li 24