

Update of the Global Electroweak Fit

Thomas Peiffer

on behalf of the Gfitter collaboration

J. Haller, A. Hoecker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

EPS Conference on High Energy Physics

Venice

06.07.2016

Introduction

The electroweak fit combines:

- Measurements of SM observables
- Theoretical relation of observables

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \qquad \frac{\operatorname{Re}(g_{V,f})}{\operatorname{Re}(g_{A,f})} = 1 - 4|Q_f|\sin^2 \theta_{\text{eff}}^f$$

$$M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

→ Consistency check of SM with high precision

Introduction

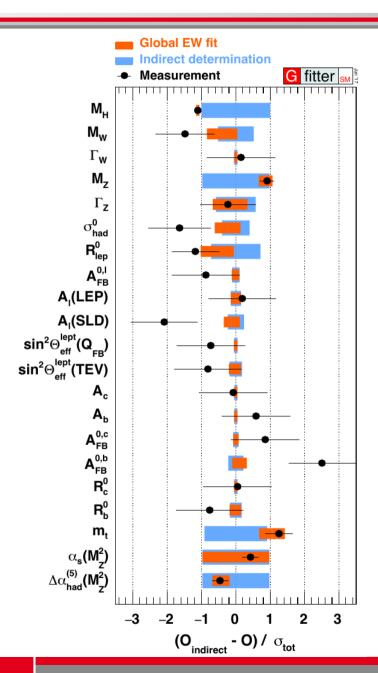
The electroweak fit combines:

- Measurements of SM observables
- Theoretical relation of observables

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \qquad \frac{\operatorname{Re}(g_{V,f})}{\operatorname{Re}(g_{A,f})} = 1 - 4|Q_f|\sin^2 \theta_{\text{eff}}^f$$

$$M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

→ Consistency check of SM with high precision

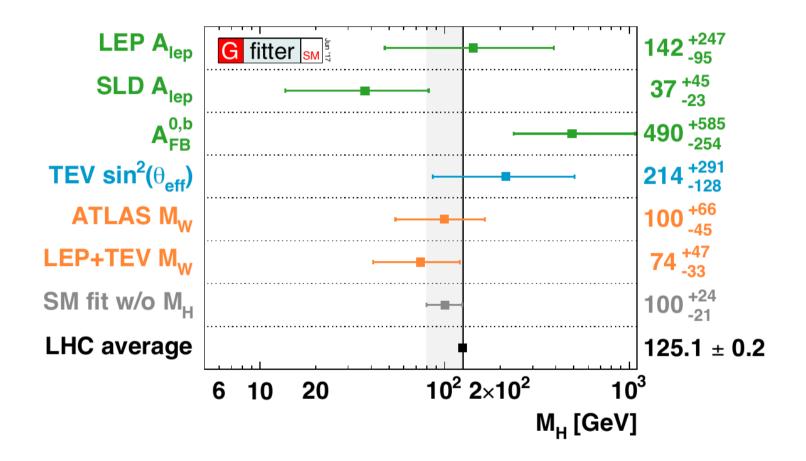

New input:

- ATLAS W mass: $M_W = 80370 \pm 19 \text{ MeV}$ (arXiv:1701.07240)
- Tevatron electroweak mixing angle: $\sin^2 \theta_{eff}^{lep} = 0.23179 \pm 0.00035$ (FERMILAB-CONF-16-295-E)
- New top mass measurements from LHC and Tevatron

Results

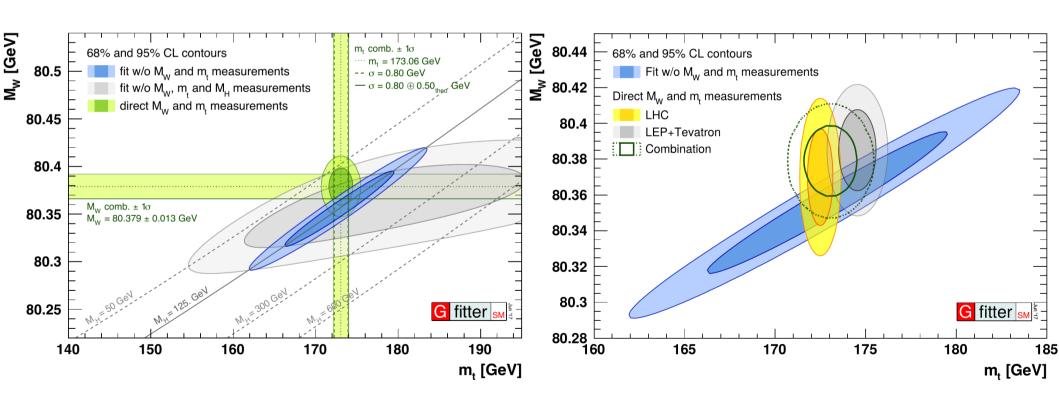
• Global χ^2 =18.15 (for ndof = 15), p-value=0.25

Predictions consistent with measurements


• Largest deviation for $A_{FB}^{0,b} \sim 2.5\sigma$

Higgs Mass

Indirect Higgs mass determination from single observables



2D Mass Scans

- Scan of M_w and M_t
- Determine χ^2 for each point in 2D space
- Individual top and W mass combinations for LHC and Tevatron
- Full combination of latest top and W mass measurements (PDG scaling method)

The 2HDM

Simple extension of the SM Higgs sector

$$\phi = \begin{pmatrix} a + ib \\ c + id \end{pmatrix}$$

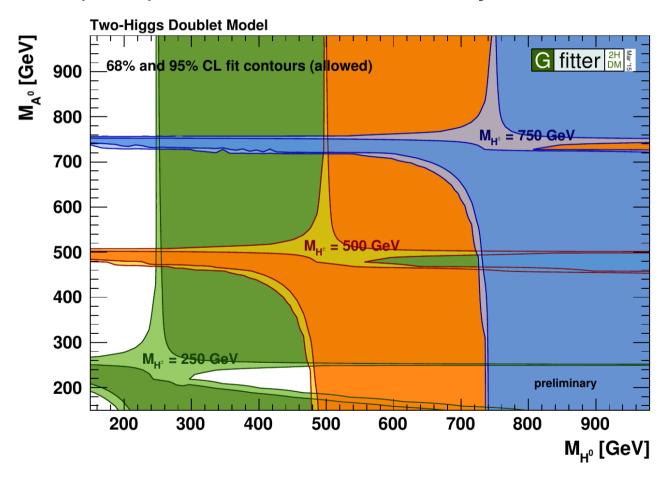
$$\phi_1 = \begin{pmatrix} a+ib \\ c+id \end{pmatrix}, \phi_2 = \begin{pmatrix} e+if \\ g+ih \end{pmatrix}$$

SM: 4 degrees of freedom

2HDM: 8 degrees of freedom

3 degrees "eaten" by W and Z boson masses

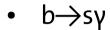
→ 1 observable Higgs boson

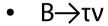

 \rightarrow 5 Higgs bosons h₀, H₀, A₀, H⁺, H⁻

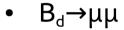
- Additional free parameters:
 - $\tan \beta = v_2/v_1$
 - α: mixing angle of the neutral Higgs fields
 - M_{12}^2 : mass parameter of the mixed term $\Phi_1^{\dagger}\Phi_2$, soft breaking scale
 - 4 types of Yukawa couplings

EW Constraints

- Use STU formalism to constrain 2HDM
- Assume: discovered 125 GeV Higgs boson is light h₀
- Keep tan β and α free (not constraint by EW data)

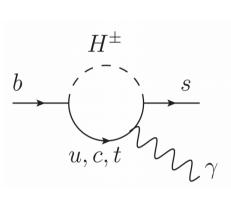


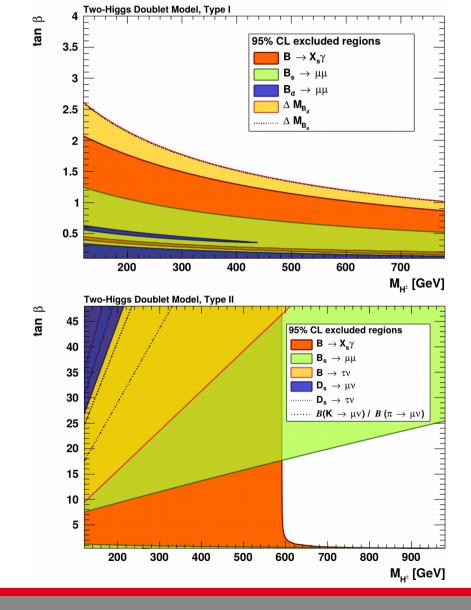

Only weak constraints on masses from electroweak data



Flavor Observables

Branching fractions of B and D mesons sensitive to H+ contributions

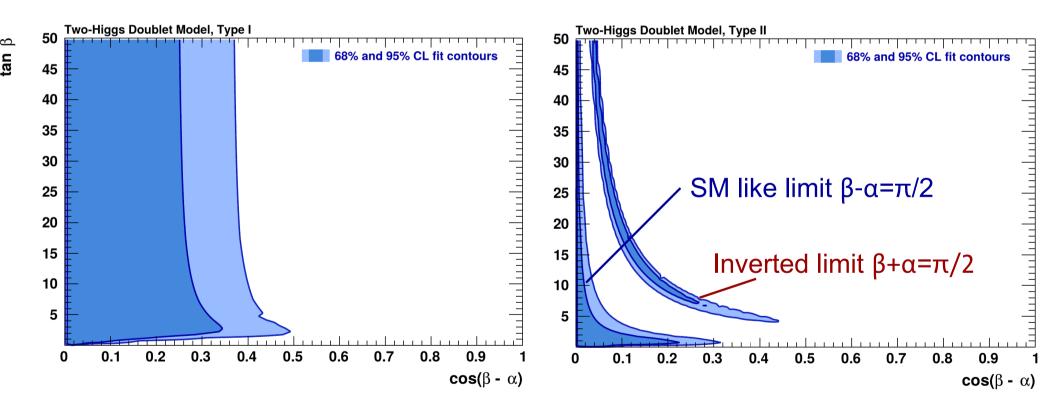




•
$$D_s \rightarrow \mu \nu$$

•
$$D_s \rightarrow \tau V$$

- BR(K \rightarrow μ v)/BR(π \rightarrow μ v)
- B_s mixing parameter ΔM(B_s)
- B_d mixing parameter $\Delta M(B_d)$
- Muon g-2



Higgs BRs

- Higgs branching ratios measured by ATLAS and CMS (J. High Energy Phys. 08 (2016) 045)
- Yukawa couplings would change in case of 2HDM
- Higgs BRs constrain angles α and β

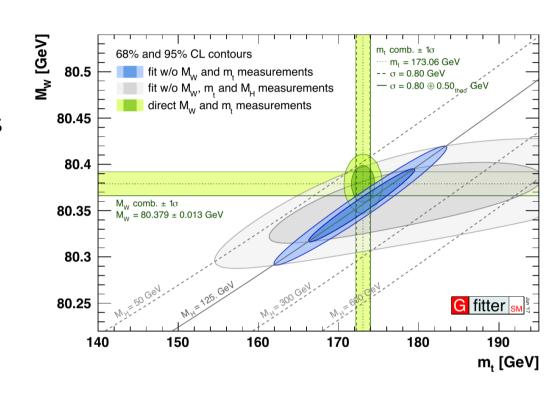
Similar limits in lepton specific and flipped models as in Type II

Mass limits

Mass scans with constraints from Higgs BRs, flavor and EW data

- One neutral Higgs boson mass should be close to M_{H+}
- Limit on M_{H+} from flavor measurements in Type II transferred into limits on neutral Higgs boson masses

Conclusion



Status of the electroweak fit:

- Latest top and W mass measurements included and combined
- Fully consistent with SM predictions

New Physics interpretation: The 2HDM

- Combination of EW, flavour and Higgs measurements
- Strong constraints on mass parameters

BACKUP

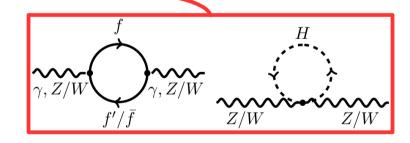
Theoretical Input

- Consistent set of full EW 2-loop calculations is available:
 - $\sin^2\Theta$ f_{eff}: effective weak mixing angle (from ratio g_V/g_A) (M. Awramik et al., PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009))
 - M_W: mass of the W boson, includes QCD corrections at 4-loop level (M. Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002))
 - Γ_f: partial widths of the Z boson (A. Freitas, JHEP 04, 070 (2014))
 - Radiator functions to Γ_f: QED and QCD corrections up to N³LO (Baikov et al., PRL 108, 222003 (2012))
 - Γ_W: width of the W boson, only 1-loop EW corrections included (Cho et al., JHEP 1111, 068 (2011)
- Estimate uncertainties due to unknown higher orders (using a geometric series):

				_
$\delta_{ m theo} M_W$	$4 \; \mathrm{MeV}$	$\delta_{\mathrm{theo}}\Gamma_{u,c}$	$0.12~{ m MeV}$	
$\delta_{ m theo} \sin^2\! heta_{ m eff}^f$	$4.7\cdot10^{-5}$	$\delta_{ m theo}\Gamma_b$	$0.21~\mathrm{MeV}$	Uncertainty on m _t :
$\delta_{ m theo}\Gamma_{e,\mu, au}$	$0.012\;\mathrm{MeV}$	$\delta_{ m theo}\sigma_{ m had}^0$	$6~\mathrm{pb}$	Relation between m _{pole}
$\delta_{ m theo}\Gamma_{ u}$	$0.014\;\mathrm{MeV}$	$\delta_{ m theo} \mathcal{R}_{V,A}$	$\sim \mathcal{O}(lpha_s^4)$	and measured mass
$\delta_{\mathrm{theo}}\Gamma_{d,s}$	$0.09~\mathrm{MeV}$	$\delta_{ m theo} m_t$	$0.5 \; \mathrm{GeV}$	
/		 		

The Electroweak Fit

• Gauge & scalar sector is determined by 4 parameters


(choose α , G_F , M_Z , M_H)

Other parameters and observables related by theory

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$
 $M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$

- → over-constrained theory
- Other SM parameters (quark masses, M_H , α_S) enter by radiative corrections

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8} \pi \alpha (1 - \Delta r)}{G_F M_Z^2}} \right)$$

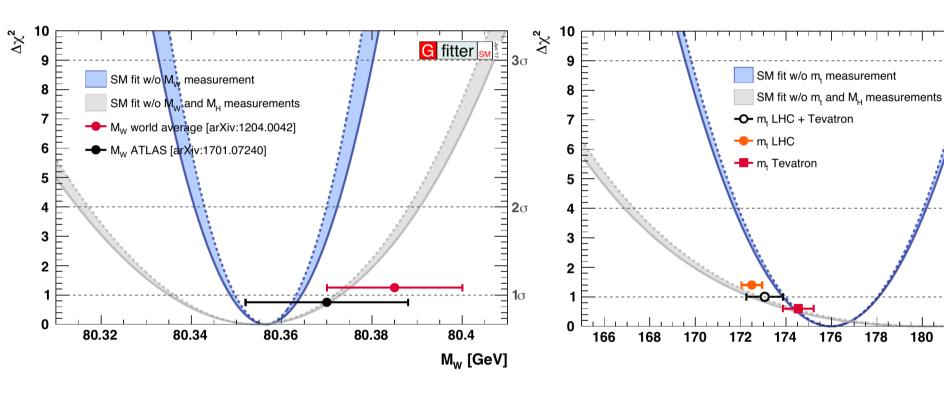
$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W \qquad g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right) \qquad g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$

G_F known with high precision → not varied in the fit

Results

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
M_H [GeV]	125.1 ± 0.2	yes	$125.1^{+0.2}_{-0.2}$	$100.2^{+24.4}_{-20.6}$	$100.3^{+23.5}_{-19.9}$
M_W [GeV]	80.379 ± 0.013	_	80.363 ± 0.007	80.356 ± 0.008	80.356 ± 0.007
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1879 ± 0.0020	91.1967 ± 0.0099	91.1969 ± 0.0096
Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4950 ± 0.0014	2.4945 ± 0.0016	2.4945 ± 0.0016
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.483 ± 0.015	41.474 ± 0.016	41.474 ± 0.015
R_ℓ^0	20.767 ± 0.025	_	20.744 ± 0.017	20.725 ± 0.026	20.724 ± 0.026
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01623 ± 0.0001	0.01622 ± 0.0001	0.01624 ± 0.0001
A_{ℓ} $^{(\star)}$	0.1499 ± 0.0018	_	0.1471 ± 0.0005	0.1471 ± 0.0005	0.1472 ± 0.0004
$\sin^2\!\! heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	_	0.23151 ± 0.00006	0.23151 ± 0.00006	0.23150 ± 0.00005
$\sin^2\!\!\theta_{\rm eff}^{\ell}({\rm TEV})$	0.2318 ± 0.0003	_	0.23151 ± 0.00006	0.23150 ± 0.00006	0.23150 ± 0.00005
A_c	0.670 ± 0.027	_	0.6679 ± 0.00022	0.6679 ± 0.00022	0.6680 ± 0.00016
A_b	0.923 ± 0.020	_	0.93475 ± 0.00004	0.93475 ± 0.00004	0.93475 ± 0.00003
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0737 ± 0.0003	0.0737 ± 0.0003	0.0737 ± 0.0002
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1031 ± 0.0003	0.1033 ± 0.0004	0.1033 ± 0.0003
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	0.21579 ± 0.00011	0.21578 ± 0.00012	0.21577 ± 0.00004
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	_	-
$m_t \; [{ m GeV}]^{(igtriangletig)}$	173.06 ± 0.94	yes	173.54 ± 0.86	$175.97^{+2.11}_{-2.12}$	$176.00^{+2.03}_{-2.04}$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \triangle)}$	2758 ± 10	yes	2756 ± 10	2738 ± 41	2739 ± 39
$\alpha_s(M_Z^2)$	_	yes	$0.1197^{+0.0030}_{-0.0029}$	0.1197 ± 0.0030	0.1198 ± 0.0028

^(*) Average of LEP ($A_\ell=0.1465\pm0.0033$) and SLD ($A_\ell=0.1513\pm0.0021$) measurements, used as two measurements in the fit. The fit w/o the LEP (SLD) measurement gives $A_\ell=0.1471\pm0.0005$ ($A_\ell=0.1469\pm0.0005$). ($^{(\bigtriangledown)}$ Combination of experimental (0.8 GeV) and theory uncertainty (0.5 GeV). In units of 10^{-5} . ($^{(\bigtriangleup)}$ Rescaled due to α_s dependency.


$M_{\rm w}$ and $M_{\rm t}$

G fitter

180

182

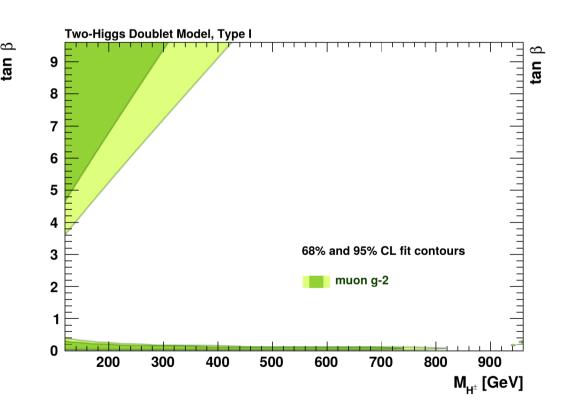
2σ

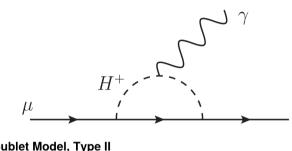
1σ

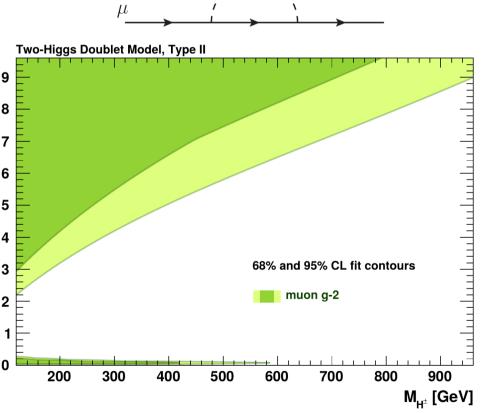
184

m, [GeV]

2HDM Types


Parameterization for various 2HDMs (taken from arXiv:1106.0034)


	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$
ξ_H^u	$\sin \alpha / \sin \beta$			
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
ξ_H^ℓ	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$
ξ^u_A	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
ξ^d_A	$-\cot \beta$	$\tan \beta$	$-\cot \beta$	$\tan \beta$
ξ_A^ℓ	$-\cot \beta$	$\tan \beta$	$\tan \beta$	$-\cot \beta$



Muon g-2

- Muon magnetic moment $a_{\mu}=(g-2)/2$ deviates from SM prediction
- $\Delta a_{\mu} = (274 \pm 63 \pm 42) * 10^{-11}$
- Theory prediction from Cherchiglia et al.

2HDM can explain discrepancy in some parameter regions