Soft gluon resummation for the associated production of a top quark pair with a W or Z boson at the LHC

Daniel Schwartländer

Institut für Theoretische Physik, WWU Münster
in collaboration with
Anna Kulesza, Leszek Motyka, Tomasz Stebel, Vincent Theeuwes

July 8, 2017

associated production of $t \bar{t}$
with a massive boson important processes: $p p \rightarrow t \bar{t} W / Z / H$
associated production of $t \bar{t}$
with a massive boson important processes: $p p \rightarrow t \bar{t} W / Z / H$

- key processes to measure the top
quark couplings to $\mathrm{W} / \mathrm{Z} / \mathrm{H}$
associated production of $t \bar{t}$
with a massive boson important processes: $p p \rightarrow t \bar{t} W / Z / H$
- key processes to measure the top
quark couplings to W/Z/H
\rightarrow test of the Standard Model
associated production of $t \bar{t}$
with a massive boson important processes: $p p \rightarrow t \bar{t} W / Z / H$
- key processes to measure the top quark couplings to W/Z/H
\rightarrow test of the Standard Model
- $t \bar{t} W / Z$ important background for new physics searches
associated production of $t \bar{t}$
with a massive boson
important processes: $p p \rightarrow t \bar{t} W / Z / H$
- key processes to measure the top quark couplings to W/Z/H \rightarrow test of the Standard Model
- $t \bar{t} W / Z$ important background for new physics searches
- $t \bar{t} W / Z$ measured at LHC [ATLAS collaboration arXiv:1609.01599][CMS collaboration CMS PAS TOP-16-017]

associated production of $t \bar{t}$ with a massive boson important processes: $p p \rightarrow t \bar{t} W / Z / H$
- key processes to measure the top quark couplings to W/Z/H \rightarrow test of the Standard Model
- $t \bar{t} W / Z$ important background for new physics searches
- $t \bar{t} W / Z$ measured at LHC [ATLAS collaboration arXiv:1609.01599][CMS collaboration CMS PAS TOP-16-017]
- NNLO calculations for this particular type of 2 to 3 processes are currently out of reach

associated production of $t \bar{t}$ with a massive boson important processes: $p p \rightarrow t \bar{t} W / Z / H$
- key processes to measure the top quark couplings to W/Z/H \rightarrow test of the Standard Model
- $t \bar{t} W / Z$ important background for new physics searches
- $t \bar{t} W / Z$ measured at LHC [ATLAS collaboration arXiv:1609.01599][CMS collaboration CMS PAS TOP-16-017]
- NNLO calculations for this particular type of 2 to 3 processes are currently out of reach
- resummation: class of corrections beyond NLO

Status of $t \bar{t} V$

- $t \bar{t} W / t \bar{t} Z$: NLO QCD, matched to PS, EW NLO corrections
[Lazopoulos, Melnikov, Petriello, '08] [Lazopoulos, McElmurry, Melnikov, Petriello, '08] [Garzelli,
Kardos, Papadopoulos, Trocsanyi, '12] [Campbell, Ellis, '12] [Kardos, Trocsanyi, Papadopoulos
'12] [Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro '14]
[Frixione, Hirschi, Pagani, Shao, Zaro, '15]

Status of $t \bar{t} V$

resummation:

- $t \bar{t} H$:
- direct QCD approach (Mellin space approach) [Kulesza, Motyka, Stebel, Theeuwes, '15 '16 '17]
- SCET-based methods [Broggio, Ferroglia, Pecjak, Signer, Yang, '16] [Broggio, Ferroglia, Pecjak, Yang, '17]
- $t \bar{t} W / t \bar{t} Z$:
- SCET-based methods [H. T. Li, c. s. Li, s. A. Li, '14] [Broggio, Ferroglia, Ossola, Pecjak, '16] [Broggio, Ferroglia, Ossola, Pecjak, Sameshima '17]

Soft gluon resummation

resummation:

Soft gluon resummation

resummation:

- emission of real and virtual gluons \rightarrow IR divergences

Soft gluon resummation

resummation:

- emission of real and virtual gluons \rightarrow IR divergences
- cancellation of IR divergences leaves logarithms

Soft gluon resummation

resummation:

- emission of real and virtual gluons \rightarrow IR divergences
- cancellation of IR divergences leaves logarithms
- logarithms large in some phase space regions

Soft gluon resummation

resummation:

- emission of real and virtual gluons \rightarrow IR divergences
- cancellation of IR divergences leaves logarithms
- logarithms large in some phase space regions
- resummation takes logarithms into account at all orders

Soft gluon resummation

resummation:

- emission of real and virtual gluons \rightarrow IR divergences
- cancellation of IR divergences leaves logarithms
- logarithms large in some phase space regions
- resummation takes logarithms into account at all orders
- emission of multiple gluons factorises in the soft/collinear limit

Soft gluon resummation

resummation:

- emission of real and virtual gluons \rightarrow IR divergences
- cancellation of IR divergences leaves logarithms
- logarithms large in some phase space regions
- resummation takes logarithms into account at all orders
- emission of multiple gluons factorises in the soft/collinear limit
- Mellin space for factorisation of phase space

$$
\sigma(N)=\int_{0}^{1} \tau^{N-1} \sigma(\tau)
$$

Soft gluon resummation

- depending on the observable: logarithms large for different kinematic limits

Soft gluon resummation

- depending on the observable: logarithms large for different kinematic limits
- invariant mass threshold limit $\hat{\tau}=\frac{Q^{2}}{\hat{s}} \rightarrow 1$

Soft gluon resummation

- depending on the observable: logarithms large for different kinematic limits
- invariant mass threshold limit $\hat{\tau}=\frac{Q^{2}}{\hat{s}} \rightarrow 1$
\rightarrow soft gluon resummation

Soft gluon resummation

- depending on the observable: logarithms large for different kinematic limits
- invariant mass threshold limit $\hat{\tau}=\frac{Q^{2}}{\hat{s}} \rightarrow 1$
\rightarrow soft gluon resummation
invariant mass threshold resummation:

Soft gluon resummation

- depending on the observable: logarithms large for different kinematic limits
- invariant mass threshold limit $\hat{\tau}=\frac{Q^{2}}{\hat{s}} \rightarrow 1$
\rightarrow soft gluon resummation
invariant mass threshold resummation:
- resummed logarithms

$$
\begin{aligned}
& \alpha_{S}^{m}\left(\frac{\log ^{n}(1-\hat{\tau})}{1-\hat{\tau}}\right)_{+} \quad m \leq 2 n-1 \\
& \int_{0}^{1} \mathrm{~d} x(f(x))_{+}=\int_{0}^{1} \mathrm{~d} x\left(f(x)-f\left(x_{0}\right)\right)
\end{aligned}
$$

Soft gluon resummation

- depending on the observable: logarithms large for different kinematic limits
- invariant mass threshold limit $\hat{\tau}=\frac{Q^{2}}{\hat{s}} \rightarrow 1$
\rightarrow soft gluon resummation
invariant mass threshold resummation:
- resummed logarithms

$$
\begin{aligned}
& \alpha_{S}^{m}\left(\frac{\log ^{n}(1-\hat{\tau})}{1-\hat{\tau}}\right)_{+} \quad m \leq 2 n-1 \\
& \int_{0}^{1} \mathrm{~d} x(f(x))_{+}=\int_{0}^{1} \mathrm{~d} x\left(f(x)-f\left(x_{0}\right)\right)
\end{aligned}
$$

- turn into $\log (N)=L$ in Mellin space

Soft gluon resummation

processes with more than 3 coloured partons

Soft gluon resummation

processes with more than 3 coloured partons
\rightarrow resummed cross section involves colour matrices

Soft gluon resummation

processes with more than 3 coloured partons
\rightarrow resummed cross section involves colour matrices
resummed cross section in Mellin space:

$$
\frac{\mathrm{d} \tilde{\sigma}_{i \rightarrow t e s}^{r e s} V}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

Soft gluon resummation

processes with more than 3 coloured partons
\rightarrow resummed cross section involves colour matrices
resummed cross section in Mellin space:

$$
\frac{\mathrm{d} \tilde{\sigma}_{i \rightarrow t t \bar{t} V}^{r e s}}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

calculations done in singlet octet colour basis

Soft gluon resummation

$$
\frac{\mathrm{d} \tilde{\sigma}_{i \rightarrow t t \bar{t} V}^{r e s}}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

Soft gluon resummation

$$
\frac{\mathrm{d} \tilde{T}_{i j \in t+t}^{r e s} V}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

- Δ_{i} : soft and collinear radiation for incoming partons

$$
\Delta_{i}=\exp \left[\int_{0}^{1} \mathrm{~d} z \frac{z^{N-1}-1}{1-z} \int_{\mu^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} A_{i}\left(\alpha_{S}\left(q^{2}\right)\right)\right]
$$

Soft gluon resummation

$$
\frac{\mathrm{d} \tilde{\sigma}_{i j t t \bar{t} V}^{r e s}}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

Soft gluon resummation

$$
\frac{\mathrm{d} \tilde{\sigma}_{i j \rightarrow t \bar{t} V}^{r e s}}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

- $\mathbf{S}_{i j \rightarrow t \bar{t} V}$ soft wide angle radiation, at NLL and in the basis in which the one-loop soft anomalous dimension matrix Γ is diagonal:

$$
\mathbf{S}_{i j \rightarrow t \bar{t} V, R, I J}=\mathbf{S}_{i j \rightarrow t \bar{t} V, R, I J}^{(0)} \exp \left[\int_{\mu}^{Q / N} \frac{\mathrm{~d} q}{q}\left(\lambda_{R ; I}^{*}+\lambda_{R, J}\right)\right]
$$

- $\lambda_{R, J}$: eigenvalues of Γ

Soft gluon resummation

$$
\frac{\mathrm{d} \tilde{\sigma}_{i j \rightarrow t \bar{t} V}^{r e s}}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t}} V \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

- $\mathbf{H}_{i j \rightarrow t \bar{t} V}=\mathbf{H}_{i j \rightarrow t \bar{t} V}^{(0)}+\frac{\alpha_{s}}{\pi} \mathbf{H}_{i j \rightarrow t \bar{t} V}^{(1)}+\ldots$: hard contributions

Soft gluon resummation

$$
\frac{\mathrm{d} \tilde{\sigma}_{i j \rightarrow t \bar{t} V}^{r e s}}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

- $\mathbf{H}_{i j \rightarrow t \bar{t} V}=\mathbf{H}_{i j \rightarrow t \bar{t} V}^{(0)}+\frac{\alpha_{s}}{\pi} \mathbf{H}_{i j \rightarrow t \bar{t} V}^{(1)}+\ldots$: hard contributions
- at NLL accuracy $\mathbf{H}_{i j \rightarrow t \bar{t} V}=\mathbf{H}_{i j \rightarrow t \bar{t} V}^{(0)}$ (Born cross section)

Soft gluon resummation

$$
\frac{\mathrm{d} \tilde{i}_{i j \in t+t \bar{t} V}}{\mathrm{~d} Q^{2}}=\operatorname{Tr}\left[\mathbf{H}_{i j \rightarrow t \bar{t} V} \mathbf{S}_{i j \rightarrow t \bar{t} V}\right] \Delta_{i} \Delta_{j}
$$

- $\mathbf{H}_{i j \rightarrow t \bar{t} V}=\mathbf{H}_{i j \rightarrow t \bar{t} V}^{(0)}+\frac{\alpha_{s}}{\pi} \mathbf{H}_{i j \rightarrow t \bar{t} V}^{(1)}+\ldots$: hard contributions
- at NLL accuracy $\mathbf{H}_{i j \rightarrow t \bar{t} V}=\mathbf{H}_{i j \rightarrow t \bar{t} V}^{(0)}$ (Born cross section)
- improvement beyond NLL: $\mathbf{H}_{i j \rightarrow t \bar{t} V}^{(1)}$ included (for full NNLL resummation $\mathrm{S}, \Delta_{i}, \Delta_{j}$ need to be upgraded to NNLL)

Cross sections for $t \bar{t} W$

total inclusive cross sections, $\sqrt{S}=13 \mathrm{TeV}, \mu_{R}=\mu_{F}=m_{t}+\frac{m_{V}}{2}$, MMHT2014
NLO: [Garzelli, Kardos, Papadopoulos, Trocsanyi '11][Garzelli, Kardos,
Papadopoulos, Trócsányi '12]:

- $\sigma_{t \bar{t} W^{+}}=422.1_{-11.5 \%}^{+12.8 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=215.6_{-11.8 \%}^{+13.4 \%} \mathrm{fb}$

Cross sections for $t \bar{t} W$

total inclusive cross sections, $\sqrt{S}=13 \mathrm{TeV}, \mu_{R}=\mu_{F}=m_{t}+\frac{m_{V}}{2}$, MMHT2014
NLO: [Garzelli, Kardos, Papadopoulos, Trocsanyi '11][Garzelli, Kardos,
Papadopoulos, Trócsányi '12]:

- $\sigma_{t \bar{t} W^{+}}=422.1_{-11.5 \%}^{+12.8 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=215.6_{-11.8 \%}^{+13.4 \%} \mathrm{fb}$

NLL matched to NLO:

- $\sigma_{t \bar{t} W^{+}}=423.5_{-11.5 \%}^{+13.2 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=216.4_{-11.6 \%}^{+13.8 \%} \mathrm{fb}$

Preliminary

Cross sections for $t \bar{t} W$

total inclusive cross sections, $\sqrt{S}=13 \mathrm{TeV}, \mu_{R}=\mu_{F}=m_{t}+\frac{m_{V}}{2}$, MMHT2014
NLO: [Garzelli, Kardos, Papadopoulos, Trocsanyi '11][Garzelli, Kardos,
Papadopoulos, Trócsányi '12]:

- $\sigma_{t \bar{t} W^{+}}=422.1_{-11.5 \%}^{+12.8 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=215.6_{-11.8 \%}^{+13.4 \%} \mathrm{fb}$

NLL matched to NLO:

- $\sigma_{t \bar{t} W^{+}}=423.5_{-11.5 \%}^{+13.2 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=216.4_{-11.6 \%}^{+13.8 \%} \mathrm{fb}$

Preliminary
NLL with $\mathbf{H}^{(1)}$ matched to NLO:

- $\sigma_{t \bar{t} W^{+}}=418.4_{-10.0 \%}^{+12.8 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=214.4_{-10.1 \%}^{+13.4 \%} \mathrm{fb}$

Preliminary

Cross sections for $t \bar{t} W$

total inclusive cross sections $\mu_{F}=\mu_{R}=Q$
NLO:

- $\sigma_{t \bar{t} W^{+}}=329.9_{-11.1 \%}^{+12.5 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=168.5_{-11.2 \%}^{+12.7 \%} \mathrm{fb}$

Cross sections for $t \bar{t} W$

total inclusive cross sections $\mu_{F}=\mu_{R}=Q$
NLO:

- $\sigma_{t \bar{t} W^{+}}=329.9_{-11.1 \%}^{+12.5 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=168.5_{-11.2 \%}^{+12.7 \%} \mathrm{fb}$

NLL matched to NLO:

- $\sigma_{t \bar{t} W^{+}}=332.1_{-11.2 \%}^{+12.5 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=170.0_{-10.7 \%}^{+12.1 \%} \mathrm{fb}$

Preliminary

Cross sections for $t \bar{t} W$

 total inclusive cross sections $\mu_{F}=\mu_{R}=Q$ NLO:- $\sigma_{t \bar{t} W^{+}}=329.9_{-11.1 \%}^{+12.5 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=168.5_{-11.2 \%}^{+12.7 \%} \mathrm{fb}$

NLL matched to NLO:

- $\sigma_{t \bar{t} W^{+}}=332.1_{-11.2 \%}^{+12.5 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=170.0_{-10.7 \%}^{+12.1 \%} \mathrm{fb}$

Preliminary
NLL with $\mathbf{H}^{(1)}$ matched to NLO:

- $\sigma_{t \bar{t} W^{+}}=341.1_{-8.6 \%}^{+10.7 \%} \mathrm{fb}$
- $\sigma_{t \bar{t} W^{-}}=175.3_{-8.4 \%}^{+9.9 \%} \mathrm{fb}$

Preliminary

Scale dependence $t \bar{t} W^{+} \mu=m_{t}+\frac{m_{W}}{2}$

Preliminary

Scale dependence $t \bar{t} W^{+} \mu=Q$

Preliminary

Scale dependence $t \bar{t} W^{-} \mu=m_{t}+\frac{m_{W}}{2}$

Preliminary

Scale dependence $t \bar{t} W^{-} \mu=Q$

Preliminary

Summary and Outlook

- NLO+NLL resummation in Mellin space for $t \bar{t} W$ extended to include NNLL term of hard origin

Summary and Outlook

- NLO+NLL resummation in Mellin space for $t \bar{t} W$ extended to include NNLL term of hard origin
- resummation at this accuracy increases the total cross section by $2.7 \%(t \bar{t} W+)$ and $3.2 \%(t \bar{t} W-)$ and reduces scale dependence for $\mu=Q$

Summary and Outlook

- NLO+NLL resummation in Mellin space for $t \bar{t} W$ extended to include NNLL term of hard origin
- resummation at this accuracy increases the total cross section by $2.7 \%(t \bar{t} W+)$ and $3.2 \%(t \bar{t} W-)$ and reduces scale dependence for $\mu=Q$
- for $\mu=m_{t}+\frac{m_{W}}{2}$ only moderate effects

Summary and Outlook

- NLO+NLL resummation in Mellin space for $t \bar{t} W$ extended to include NNLL term of hard origin
- resummation at this accuracy increases the total cross section by $2.7 \%(t \bar{t} W+)$ and $3.2 \%(t \bar{t} W-)$ and reduces scale dependence for $\mu=Q$
- for $\mu=m_{t}+\frac{m_{W}}{2}$ only moderate effects

Outlook:

Summary and Outlook

- NLO+NLL resummation in Mellin space for $t \bar{t} W$ extended to include NNLL term of hard origin
- resummation at this accuracy increases the total cross section by $2.7 \%(t \bar{t} W+)$ and $3.2 \%(t \bar{t} W-)$ and reduces scale dependence for $\mu=Q$
- for $\mu=m_{t}+\frac{m_{W}}{2}$ only moderate effects

Outlook:

- $t \bar{t} Z$

Summary and Outlook

- NLO+NLL resummation in Mellin space for $t \bar{t} W$ extended to include NNLL term of hard origin
- resummation at this accuracy increases the total cross section by $2.7 \%(t \bar{t} W+)$ and $3.2 \%(t \bar{t} W-)$ and reduces scale dependence for $\mu=Q$
- for $\mu=m_{t}+\frac{m_{W}}{2}$ only moderate effects

Outlook:

- $t \bar{t} Z$
- increase accuracy to NNLL

