Measurement of exclusive hadronic cross sections with the BABAR detector and implications on the g-2 of the muon

Evgeny Solodov

NSU/BINP, Novosibirsk

on behalf of the BABAR Collaborations

EPS 2017 Venice - July 5-12, 2017

$(g-2)_{\mu}/2$ of muon (experiment)

Magnetic moment

$$\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$$

√The Dirac equation predicts g=2 for point-like fermions.

✓ Higher order QFT contributions lead to nonzero

$$a=(g-2)/2$$

 \checkmark a_{μ} is sensitive to New Physics contributions

E821@BNL (1997-2001): G.W. Bennett *et al.*, Phys. Rev. D **77**, 072003 (2006)

 $a_u = (11 659 209.1 \pm 6.3) \times 10^{-10} (0.54 ppm)$

E989 @ FNAL (2017-...): F. Gray *et al.*, arXiv: 1510.003 $\mathbf{a}_{\mu} = \dots$ **(0.14 ppm)**

E34 @ J-PARC (????-...): T. Mibe *et al.*, Chin. Phys. C **34** (2010) 745 $\mathbf{a}_{\mu} = \dots$ **(0.1 ppm)**

$(g-2)_{\mu}/2$ of muon (theory)

☐ The leading order hadronic contribution is calculated using dispersion relations from experimental data on the total cross section of the e⁺e⁻ annihilation into hadrons

Low energies (E < 2 GeV) give dominant contribution into $a_{\mu}^{had,LO-VP}$ (92%).

$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

$a_{\mu} = (g-2)_{\mu} / 2$

DHMZ , TAU 2016, arXiv:1612.02743 Individual SM contributions \times 10⁻¹⁰

$a_{\mu}^{\ QED}$	11658471.895 ± 0.008
$a_{\mu}^{\;\;EW}$	15.4 ± 0.1
$a_{\mu}^{\;\;had,LO-VP}$	692.6 ± 3.3
$a_{\mu}^{\;\;had,HO-VP}$	-8.63 ± 0.09
$a_{\mu}^{had,LbLs}$	10.5 ± 2.6

Comparison with measurement

$a_{\mu}^{ ext{ total-SM}}$	11659181.7 ± 4.2
$a_{\mu}^{~BNL-E821}$	11659209.1 ± 6.3
Data - SM	$27.4 \pm 7.6 (3.6\sigma)$

F.Jegerlehner, arXiv:1705.00263

Data-SM $31.3 \pm 7.7 (4.1\sigma)$

$(g-2)_{\mu}/2$ of muon (theory)

- ☐ Below 2 (1.8) GeV the total cross section is calculated as a sum of exclusive channels.
- \Box The contributions of different hadronic channels into $a_{\mu}^{had,LO-}$

 $\ensuremath{\square}$ and its squared error $\ensuremath{\sigma^2}$

DHMZ, TAU 2016, arXiv:1612.02743

BABAR Experiment

PEP-II asymmetric e⁺e⁻ collider at SLAC (9 GeV e⁻ and 3.1 GeV e⁺)

Data, about 500 fb⁻¹, were collected in 1999-2008

For ISR analyses, a data sample of 469 fb⁻¹ collected near or at a c.m. energy of 10.58 GeV (at and near Y(4S)) is used.

ISR method@BABAR

The mass spectrum of the hadronic system in the reaction $e^+e^- \rightarrow f \gamma$ reaction is related to the cross section of the reaction $e^+e^- \rightarrow f$.

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \sigma_0(s(1-x)), \quad x = \frac{2E_{\gamma}}{\sqrt{s}}$$

The ISR photon is emitted predominantly along the beam axis. The produced hadronic system is boosted against the ISR photon. Due to limited detector acceptance the mass region below 2 GeV can be studied only with detected photon (about 10% of ISR events).

BABAR tagged ISR analyses

22 final states were studied, 20 papers on low energy ISR studies were published

Four new analyses are discussed in this talk

 $\sqrt{\pi^{+}\pi^{-}\pi^{0}\pi^{0}}$

 $\checkmark \pi^+ \pi^- \eta$

 \checkmark K_SK_L π^0 , K_SK_L η , K_SK_L $\pi^0\pi^0$ 10-2

 \checkmark K_SK $^{+}\pi^{-}\pi^{0}$, K_SK $^{+}\pi^{-}\eta$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ (before BABAR)

Before the BaBar measurement:

- Limited precision
- Big disagreement between experiments
- Small energy ranges

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C71 (2011) 1515, C72 (2012) 1874.

Channel	$a_{\mu}^{ m had,LO} \ [10^{-10}]$
$\frac{1}{\pi^0 \gamma}$	$4.42 \pm 0.08 \pm 0.13 \pm 0.12$
$\eta\gamma$	$0.64 \pm 0.02 \pm 0.01 \pm 0.01$
$\pi^+\pi^-$	$507.80 \pm 1.22 \pm 2.50 \pm 0.56$
$\pi^+\pi^-\pi^0$	$46.00 \pm 0.42 \pm 1.03 \pm 0.98$
$2\pi^+2\pi^-$	$13.35 \pm 0.10 \pm 0.43 \pm 0.29$
$\pi^+\pi^-2\pi^0$	$18.01 \pm 0.14 \pm 1.17 \pm 0.40$
$2\pi^{+}2\pi^{-}\pi^{0} \ (\eta \text{ excl.})$	$0.72 \pm 0.04 \pm 0.07 \pm 0.03$
$\pi^+\pi^-3\pi^0$ (η excl., from isospin)	$0.36 \pm 0.02 \pm 0.03 \pm 0.01$
$3\pi^+3\pi^-$	$0.12 \pm 0.01 \pm 0.01 \pm 0.00$
$2\pi^{+}2\pi^{-}2\pi^{0} \ (\eta \text{ excl.})$	$0.70 \pm 0.05 \pm 0.04 \pm 0.09$
$\pi^+\pi^-4\pi^0$ (η excl., from isospin)	$0.11 \pm 0.01 \pm 0.11 \pm 0.00$
$\eta\pi^+\pi^-$	$1.15 \pm 0.06 \pm 0.08 \pm 0.03$
$\eta\omega$	$0.47 \pm 0.04 \pm 0.00 \pm 0.05$
$\eta 2\pi^+ 2\pi^-$	$0.02 \pm 0.01 \pm 0.00 \pm 0.00$
$\eta \pi^+ \pi^- 2\pi^0$ (estimated)	$0.02 \pm 0.01 \pm 0.01 \pm 0.00$
$\omega\pi^0 (\omega o\pi^0\gamma)$	$0.89 \pm 0.02 \pm 0.06 \pm 0.02$
$\omega \pi^+ \pi^-, \omega 2 \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.08 \pm 0.00 \pm 0.01 \pm 0.00$
$\omega \text{ (non-}3\pi, \pi\gamma, \eta\gamma)$	$0.36 \pm 0.00 \pm 0.01 \pm 0.00$
K^+K^-	$21.63 \pm 0.27 \pm 0.58 \pm 0.36$
$K^0_S K^0_L$	$12.96 \pm 0.18 \pm 0.25 \pm 0.24$
$\phi \text{ (non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05 \pm 0.00 \pm 0.00 \pm 0.00$
$KK\pi$ (partly from isospin)	$2.39 \pm 0.07 \pm 0.12 \pm 0.08$
$K\overline{K}2\pi$ (partly from isospin)	$1.35 \pm 0.09 \pm 0.38 \pm 0.03$
$KK3\pi$ (partly from isospin)	$-0.03 \pm 0.01 \pm 0.02 \pm 0.00$
$\phi\eta$	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$
$\omega K\overline{K}\;(\omega o\pi^0\gamma)$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ @ BABAR

- BABAR results are most precise and covers wider energy range
- Systematic uncertainty is 3.1% in the 1.2-2.7 GeV energy range.
- Contribution to a_μ for the range
 1.02<E_{CM}<1.8 GeV is measured to be [17.5 ± 0.6 (stat+syst)] x 10⁻¹⁰ (3.4% precision)
- Previous result including the preliminary BABAR data from 2007 is [18.0 ± 1.2 (stat+syst)] x 10⁻¹⁰ (6.7% precision)

$e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section

The BABAR results in the $\eta \rightarrow \gamma \gamma$ mode agrees well with the previous measurements, but is more precise and covers wider energy range.

Systematic uncertainty near the cross section maximum, 1.35-1.80 GeV, is 4.5%.

$$a_{\mu}^{\text{ had LO}}(\sqrt{s} < 1.8 \text{ GeV}) = (1.18 \pm 0.06) \cdot 10^{-10}$$

 $1.15 \pm 0.10 - All$ before BaBar

$e^+e^- \rightarrow K\overline{K}\pi\pi$

There are six combinations in the $e^+e^- \to K \bar K \pi \pi$ process . Four were measured previously.

Phys. Rev. D 86, 012008 (2012)

Phys. Rev. D 89, 092002 (2014)

Evgeny Solodov

$e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$ @ BABAR

Phys. Rev. D 95, 052001 (2017)

- First measurement
- Systematic uncertainty is 25% at the peak, grows to 60% at 2 GeV
- Dominant K*(892) $\overline{K}\pi$ intermediate state.

$e^+e^- \rightarrow K_S K^+\pi^-\pi^0$ @ BABAR

Phys. Rev. D 95, 092005 (2017)

Intermediate state

$K^{*0}K^{0}_{S}\pi^{0}$
$K^{*0}K^{\pm}\pi^{\mp}$
$K_2^*(1430)^0K_S^0\pi^0$
$K_2^*(1430)^0K^{\pm}\pi^{\mp}$
$K^*(892)^{\pm}K^0_S\pi^{\mp}$
$K^*(892)^{\pm}K^{\mp}\pi^0$
$K_2^*(1430)^{\pm}K_S^0\pi^{\mp}$
$K_2^*(1430)^{\pm}K^{\mp}\pi^0$
$K^{*0} \overline{K}^{*0}$
$K^*(892)^+K^*(892)^-$
$K_{S}^{0}K^{\pm}\rho(770)^{\mp}$
<u> </u>

- Systematic uncertainty is 6-7% below 3 GeV
- More than 10 intermediate states dominant are $K^*(892)\overline{K}\pi$, $K_SK^+\rho^-(770)$

$e^+e^- \rightarrow K_S K_L \pi^0$, $K_S K_L \eta$, $K_S K^+ \pi^- \eta$ @ BABAR

Phys. Rev. D 95, 052001 (2017)

Phys. Rev. D 95, 092005 (2017)

- First measurement
- Systematic uncertainty is 10% near the peak, grows to 30% at 3.0 GeV
- Dominant K*(892)K intermediate state

- First measurement
- Systematic uncertainty
 is 25% at the peak, grows
 to 60% at 2 GeV
- First measurement
- Systematic uncertainty is 12-19% below 3 GeV
- Dominant $K^*(892)\overline{K}\eta$ intermediate state.

Total $e^+e^- \rightarrow KK\pi$ and $KK\pi\pi$ cross sections

- All modes have now been measured by BABAR
- $KK\pi$ is about 12% of the total cross section for $E_{cm} = 1.65$ GeV
- $KK\pi\pi$ is about 25% of the total cross section for $E_{cm} = 2.0 \text{ GeV}$
- Precision on (g-2)/2 improved (no reliance on isospin)

$$a_{\mu}(KK\pi) = (2.45 \pm 0.15) \ 10^{-10}$$
 $a_{\mu}(KK\pi\pi) = (0.85 \pm 0.05) \ 10^{-10}$ $a_{\mu}(KK\pi\pi) = (0.85 \pm 0.05) \ 10^{-10}$

2.5

Energy region near 2 GeV

☐ At E < 2 GeV the total cross section is calculated as a sum of exclusive channels.

☐ The exclusive data are incomplete in the region 1.6<E<2.0 GeV.

□ There is no experimental information on the final states $\pi^+\pi^-\pi^0\eta$, $\pi^+\pi^-\eta\eta$, $\pi^+\pi^-\pi^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0\pi^0\eta$, 7π ...
□ The important experimental task is

to measure all significant exclusive channels below 2 GeV, and perform comparison with inclusive measurements and pQCD prediction.

$$R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Summary

- ✓ Precise low-energy e⁺e⁻ hadronic cross section data are needed to obtain an accurate SM prediction for a_u had,LO-VP
- Recent results on the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$, KK π , KK $\pi\pi$ cross sections from BABAR reduce the uncertainty on $a_u^{had,LO-VP}$
- ✓ New results are expected from BABAR, as well as from BES III, SND, CMD-3

BABAR ISR references

 $e^+e^- \rightarrow \pi^+\pi^-$

 $e^+e^- \rightarrow K^+K^-$

 $e^+e^- \rightarrow K_S K_I$, $K_S K_I \pi^+\pi^-$, $K_S K_S \pi^+\pi^-$, $K_S K_S K^+K^-$

e⁺e⁻ → p anti-p

 $e^+e^- \rightarrow \Lambda$ anti- Λ , Σ^0 anti- Σ^0 , Λ anti- Σ^0

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

 $e^+e^- \to K^+K^-\eta$, $K_SK^+\pi^- K^+K^-\pi^0$

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-, K^+K^-\pi^0\pi^0, K^+K^-K^+K^-$

 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$, $2(\pi^+\pi^-)\eta$, $K^+K^-\pi^+\pi^-\pi^0$, $K^+K^-\pi^+\pi^-\eta$

 $e^+e^- \rightarrow 3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0), K^+K^-2(\pi^+\pi^-)$

Phys. Rev. Lett. 103 231801 (2009)

Phys. Rev. D 86, 032013 (2012)

Phys. Rev. D 88, 032013 (2013)

Phys. Rev. D 92, 072008 (2015)

Phys. Rev. D 89, 092002 (2014)

Phys. Rev. D 73, 012005 (2006)

Phys. Rev. D 87, 092005 (2013)

Phys. Rev. D 88, 072009 (2013)

Phys. Rev. D 76, 092006 (2007)

Phys. Rev. D 70, 072004 (2004)

Phys. Rev. D 77, 092002 (2008)

Phys. Rev. D 71, 052001 (2005)

Phys. Rev. D 85, 112009 (2012)

Phys. Rev. D 74, 091103 (2006)

Phys. Rev. D 76, 012008 (2007)

Phys. Rev. D 86, 012008 (2012)

Phys. Rev. D 76, 092005 (2007)

Phys. Rev. D 73, 052003 (2006)

BABAR tagged ISR analyses

Fully exclusive measurement

✓ Photon with E_{CM} > 3 GeV, which is assumed to be the ISR photon
✓ All final hadrons are detected and identified

Large-angle ISR forces the hadronic system into the detector fiducial region

✓A weak dependence of the detection efficiency on dynamics of the hadronic system (angular and momentum distributions in the hadron rest frame) ⇒ smaller model uncertainty

✓A weak dependence of the detection efficiency on hadron invariant mass ⇒ measurement near and above threshold with the same selection criteria.

Kinematic fit with requirement of energy and momentum balance

√ excellent mass resolution

√ background suppression

Can access a wide range of energy in a single experiment: from threshold to ~5 GeV

$e^+e^- \rightarrow \pi^+\pi^-$

- Large progress in ISR measurements during the last decade
- ■CMD-2, KLOE, BABAR, BES-III claim systematic uncertainty at a subpercent level

- Most recent measurement was performed by BES III using ISR technique
- Analysis is based on the data set with an integrated luminosity of 2.93 fb⁻¹ taken at 3.773 GeV

Phys. Lett. B 753, 629 (2016)

$e^+e^- \rightarrow \pi^+\pi^-$

Evolution of the $e^+e^- \rightarrow \pi^+\pi^-$ contribution into $a_{\mu}^{had,LO}$ (DHMZ)

			× 10 ⁻¹⁰
EPJ C 31,503 (2003) -	•	CMD-2 2003 + other e ⁺ e ⁻	508.2 ± 5.9
EPJ C 66,127 (2010) —	•	+ CMD-2 2006 + SND 2006	504.6 ± 4.3
EPJ C 66,127 (2010) —	•—	+ KLOE 2008	503.5 ± 3.5
EPJ C 66,1 (2010)	-	+ BABAR 2009	508.4 ± 2.9
EPJ C 71,1515 (2011)	-	+ KLOE 2010	507.8 ± 2.8
TAU 2016	-•-	+ KLOE 2012 + BES III 2016	506.9 ± 2.5
500	510		

The statistical error decreased from 5.2 to 1.1, while the systematic from 2.7 to 2.3.

$e^+e^- \rightarrow \pi^+\pi^-$

Systematic differences between data from different experiments reach 5% and are significantly larger than the claimed systematic uncertainties (<1%)

π⁺π⁻ mass spectrum

- MC uses a model with the ρ(770)η intermediate state
- The ρ(770)η mechanism is dominant
- We confirm the SND observation that the $\pi^+\pi^-$ mass distribution is not fully described by the $\rho(770)\eta$ model.

The observed shift of the peak may be result of the interference with other mechanism, for example, $\rho(1450)\eta$

$e^+e^- \rightarrow \pi^+\pi^-\eta$: VMD fits

$e^+e^- \rightarrow \pi^+\pi^-\eta$: CVC test

$$\frac{\mathcal{B}(\tau^- \to \pi^- \pi^0 \eta \nu_\tau)}{\mathcal{B}(\tau^- \to e^- \bar{\nu_e} \nu_\tau)} = \int_{(2m_\pi + m_\eta)^2}^{m_\tau^2} dq^2$$

$$\sigma_{e^+ e^- \to \pi^+ \pi^- \eta}^{I=1} (q^2) \frac{3|V_{ud}|^2 S_{EW}}{2\pi \alpha^2} \frac{q^2}{m_\tau^2} (1 - \frac{q^2}{m_\tau^2})^2 (1 + 2\frac{q^2}{m_\tau^2})$$

CVC-prediction based on BABAR data: $B(\tau^- \to \pi^- \pi^0 \eta \nu_{\tau}) = (0.162 \pm 0.008)\%$

The conserved vector current (CVC) hypothesis and isospin symmetry allow to predict the hadronic mass spectrum and branching fraction for the decay $\tau^- \!\!\!\!\! \to \pi^- \!\!\!\! \pi^0 \, \eta \nu_\tau$ from data on the $e^+ e^- \!\!\!\! \to \pi^+ \!\!\!\! \pi^{--} \eta$ cross section.

CVC-prediction based on the SND data: $B(\tau^- \to \pi^- \pi^0 \eta \nu_{\tau}) = (0.156 \pm 0.011)\%$

The difference between the CVC prediction and experimental value, about 15%, is too large to be explained by isospin-breaking corrections.

PDG14 value:

B(τ - \rightarrow π - π ⁰ $\eta \nu_{\tau}$) = (0.139 ± 0.010)% CVC-experiment difference is 1.8σ.

The PDG value is dominated by the Belle measurement:

B($\tau^- \rightarrow \pi^- \pi^0 \eta \nu_{\tau}$) = (0.135 ± 0.007)% CVC-experiment difference is 2.4σ.