

# Measurement of the hadronic cross sections for $e^+e^-$ to final states with neutral kaons with the BABAR detector

Alberto Lusiani Scuola Normale Superiore and INFN sezione di Pisa

on behalf of the BABAR collaboration



**EPS-HEP** 

2017

this

poster

### Abstract

We measure the energy-dependent cross-sections for  $e^+e^-$  annihilation to  $K_S^0K_L^0\pi^0$ ,  $K_S^0K_L^0\pi^0\pi^0\pi^0$ , and  $K_S^0K_L^0\pi^0\pi^0\pi^0$  up to a center-of-mass energy of 4 GeV with the BABAR detector at PEP-II (SLAC). The measurements rely on studies of  $e^+e^-$  collisions at and near the  $\Upsilon(4S)$  that result in the above mentioned final states plus a photon radiated from the initial state. The intermediate resonance structures are studied, and we observe  $J/\psi$  decays to all of these final states for the first time. We present measurements of their  $J/\psi$  branching fractions, and search for  $\psi(2S)$  decays. The results are based on 469  $fb^{-1}$  of data.

### Introduction and motivation

The study of  $e^+e^-$  annihilation events with initial-state radiation (ISR) allows the *B*-factories to measure  $\sigma(e^+e^- \rightarrow hadrons)$  at energies below the center-of-mass energy, contributing experimental inputs for the determination of the hadronic contribution to  $(g-2)_{\mu}$ . This technique relies on the precise simulation of the "radiation function" that relates the  $e^+e^- \rightarrow$  hadrons cross-sections to the corresponding ISR processes  $e^+e^- \rightarrow \gamma_{ISR}$  hadrons. In the following processes, charge conjugation is silently implied.

### **Event selection**

- > 2 opposite-sign tracks from interaction region,  $\geq$  4 clusters in electromagnetic calorimeter (EMC)
- ► ISR photon ( $\gamma_{ISR}$ ) candidate: EMC cluster with E > 3 GeV
- $\sim K_S^0$  from  $\pi^+\pi^-$  candidate tracks with 482 $< m_{\pi\pi} < 512$  MeV, displaced from beams 0.1 $< d_{xy} < 40$  cm •  $K_I^0$  candidate direction (not energy) from one EMC cluster with  $E > 200 \,\text{MeV}$  $\succ$   $K_{l}^{0}$  momentum determined with constrained kinematic fit ►  $\pi^0$  and  $\eta$  candidates from 2 EMC clusters,  $|m(\gamma\gamma) - m(\pi^0)| < 30 \text{ MeV}$ ,  $|m(\gamma\gamma) - m(\eta)| < 50 \text{ MeV}$ • extra EMC clusters (multi-photon ISR, spurious) must have  $E_{\gamma} < 500 \,\text{MeV}$

## $K_{S}^{0}K_{L}^{0}\eta$ channel







### Constrained kinematic fits are used to ...

- suppress / control backgrounds
- signal final states cross-feed:  $\gamma_{\text{ISR}} K_S^0 K_L^0 \pi^0$ ,  $\gamma_{\text{ISR}} K_S^0 K_L^0 \eta$ ,  $\gamma_{\text{ISR}} K_S^0 K_L^0 \pi^0 \pi^0$ important backgrounds:  $\gamma_{\text{ISR}} K_S^0 K_L^0$ ,  $\gamma_{\text{ISR}} K_S^0 K^{\pm} \pi^{\mp}$ ,  $\gamma_{\text{ISR}} K_S^0 K^{\pm} \pi^{\mp} \pi^0$
- ▶ remove large  $\gamma_{\text{ISR}}\phi$ ,  $\phi \to K^0_S K^0_L$  background by requiring inconsistent  $\gamma_{\text{ISR}} K_S^0 K_L^0$  fit ( $\chi^2 > 15$ ) when  $m(K_S^0 K_L^0) < 1040 \,\text{MeV}$



### Use data to calibrate backgrounds and cross-feeds



- $K_S^0 K_L^0 \eta$  mass distribution
- $K_{S}^{0}K_{I}^{0}\eta$  channel dominated at low energies by  $e^+e^- \rightarrow \phi \eta$ ,  $\phi \rightarrow K_{S}^{0} K_{I}^{0}$  (red open circles)
- measured  $e^+e^- \rightarrow \phi(\kappa_S^0\kappa_I^0)\eta$  cross section (dots) compared with that obtained in the  $K^+K^-\eta$ channel [1] (green open circles).
- background-subtracted cross-section of  $e^+e^- \rightarrow K^0_S K^0_L \eta$  as function of energy
- error bars are statistical only

BABAR

### $K_S^0 K_L^0 \pi^0 \pi^0$ channel



- $K_S^0 K_L^0 \pi^0 \pi^0$  mass distribution
- additional background estimated from control region (red open circles)
- $m(K_{S}K_{L}\pi^{0}\pi^{0}) (GeV/c^{2})$ •  $K_S^0 K_L^0 \pi^0 \pi^0$  bkg-subtracted mass distribution



cross-section of  $e^+e^- 
ightarrow K^0_S K^0_L \pi^0 \pi^0$  as function of energy

### $J/\psi$ and $\psi(2S)$ region signals, first observation

Events/0.1 GeV/c



 $K_{S}^{0}K_{I}^{0}\eta$  mass distribution







### $K_{S}^{0}K_{L}^{0}\pi^{0}$ channel



▶  $J/\psi$  signal in all channels, data on points with errors, fit on continuous line •  $\psi(2S)$  signal hints in  $e^+e^- \rightarrow K^0_S K^0_L \eta$  and  $e^+e^- \rightarrow K^0_S K^0_L \pi^0 \pi^0$ 

| Quantity                                                                                                              | Value (10 <sup>-3</sup> ) |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------|
| $\mathcal{B}(J/\psi  ightarrow K^0_{S} K^0_{L} \pi^0)$                                                                | $2.06\ \pm 0.24\pm 0.10$  |
| $\mathcal{B}(J\!/\psi  ightarrow K^0_{\mathcal{S}} K^0_{\scriptscriptstyle L} \eta)$                                  | $1.45\ \pm 0.32 \pm 0.08$ |
| $\mathcal{B}(J\!/\psi  ightarrow K^0_{\mathcal{S}} K^0_{\scriptscriptstyle L} \pi^0 \pi^0)$                           | $1.86\ \pm 0.43 \pm 0.10$ |
| $\mathcal{B}(J\!/\psi  ightarrow K^*(892)^0 \overline{K}{}^0) \ \cdot \ \mathcal{B}(K^*(892)^0  ightarrow K^0 \pi^0)$ | $1.20\ \pm 0.15 \pm 0.06$ |
| $\mathcal{B}(J\!/\psi ightarrow K_2^st(1430)^0 \overline{K}{}^0) \cdot \mathcal{B}(K_2^st(1430) ightarrow K^0 \pi^0)$ | $0.43\ \pm 0.12 \pm 0.02$ |
| $\mathcal{B}(\psi(2\mathcal{S}) ightarrow\mathcal{K}_{\mathcal{S}}^{0}\mathcal{K}_{\mathcal{L}}^{0}\pi^{0})$          | < 0.3                     |
| $\mathcal{B}(\psi(2S) ightarrow K^0_{\mathcal{S}}K^0_{\scriptscriptstyle L}\eta)$                                     | $1.33\ \pm 0.46 \pm 0.07$ |
| $\mathcal{B}(\psi(2S) ightarrow\mathcal{K}^0_S\mathcal{K}^0_L\pi^0\pi^0)$                                             | $1.24\ \pm 0.54\pm 0.06$  |

#### Paper

BABAR collaboration, Cross sections for the reactions  $e^+e^- \rightarrow K_S^0 K_L^0 \pi^0$ ,  $K_S^0 K_L^0 \eta$ , and  $K_{S}^{0}K_{I}^{0}\pi^{0}\pi^{0}\pi^{0}$  from events with initial-state radiation, Phys. Rev. D 95, 052001 (2017), arXiv:1701.08297 [hep-ex]

#### **References**





#### [1] BaBar, B. Aubert et al., Phys. Rev. D77 (2008) 092002, arXiv:0710.4451.

#### European Physical Society Conference on High Energy Physics (EPS-HEP), Venice, Italy, 5-12 July 2017

