Charm Quark Mass with Calibrated Uncertainty

Jens Erler (IF-UNAM, Mexico City)

EPS-HEP 2017, Venice, Italy, July 5-12, 2017

in collaboration with Pere Masjuan (IFAE-UAB, Barcelona) Hubert Spiesberger (MITP-JGU, Mainz)

Eur. Phys. J C77 (2017), 99

Motivation

- m_c enters many QCD processes
- renormalization group running of α (0th moment!) *JE 1999*
- running of sin²θ_W

 JE, Ramsey-Musolf 2005
- SM prediction of g_{μ} 2 JE, Luo 2001
- test of mass-Yukawa coupling relation in single Higgs SM
- can determine m_c with lattice, but second opinion wanted

Motivation

- m_c enters many QCD processes
- renormalization group running of α (0th moment!) JE 1999
- running of sin²θ_W

 JE, Ramsey-Musolf 2005
- SM prediction of g_{μ} 2 JE, Luo 2001
- test of mass-Yukawa coupling relation in single Higgs SM

• can determine m_c with lattice, but second opinion wanted

Relativistic sum rule formalism

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4\hat{m}_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

- QCD sum rule of moments of the vector current correlator Π_{q}
- pQCD to $\mathcal{O}(\alpha_S^3)$ Chetyrkin, Kühn, Sturm 2006; Boughezal, Czakon, Schutzmeier 2006; Kniehl, Kotikov 2006; Maier, Maierhofer, Marquard 2008; Maier, Maierhofer, Marquard, Smirnov 2010
- t \rightarrow 0 \Rightarrow 1st moment sum rule \mathcal{M}_{I}
- differentiating \Rightarrow higher moments \mathcal{M}_n Novikov et al. 1978
- t $\rightarrow \infty \Rightarrow$ 0th moment sum rule \mathcal{M}_0 JE, Luo 2003
- regularization: subtract $R_c(s) = 4/3 \lambda_1(s)$ at $m_c = 0$

Features of our approach

- only experimental input: electronic widths of J/ ψ and $\psi(2S)$
- continuum contribution from self-consistency between sum rules
- include M₀ →
 stronger (milder) sensitivity
 to continuum (m_c)
- quark-hadron duality needed only in finite region (not locally)

Result

$$\overline{m}_c(\overline{m}_c) = 1272 \pm 8 + 2616 [\overline{\alpha}_s(M_z) - 0.1182] MeV$$

- uses \mathcal{M}_0 and \mathcal{M}_2 (assumed uncorrelated)
- central value in good agreement with other recent sum rule determinations
- less agreement regarding theory dominated uncertainty

Error calibration

- experimental input error
- truncation error (we use more conservative estimate than taking last computed term)
- we use e⁺ e⁻ → hadron data to control method (higher order in OPE & quark-hadron duality violations)
- parametric uncertainty (100%)
- $\overline{\alpha}_{S}(M_{Z}) = 0.1182 \pm 0.0016$

Continuum

•
$$R_c^{cont} = 4/3 \lambda_1(s) [I - 4 \overline{m}^2(2M_D)/s']^{1/2} [I + 2 \lambda_3 \overline{m}^2(2M_D)/s']$$

•
$$s' = s + 4 [\overline{m}^2(2M) - M^2]$$

- λ_1 known asymptotic behaviour
- λ_3 free parameter (expect ≈ 1)
- \mathcal{M}_0 & $\mathcal{M}_2 \Rightarrow \lambda_3 = 1.23(6)$

- removing background from light quarks and (small) singlet contributions from Crystal Ball, BES & CLEO data $\Rightarrow \lambda_3 = 1.34(17)$
- or fit normalization of sub-continuum data to pQCD $\Rightarrow \lambda_3 = 1.15(16)$

Alternative fits

- \mathcal{M}_0 , \mathcal{M}_1 : continuum region!
- \mathcal{M}_0 , \mathcal{M}_3 or \mathcal{M}_1 , \mathcal{M}_2 : OPE truncation!
- \mathcal{M}_0 , \mathcal{M}_2 : comparable errors
- $(\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2)_{\rho}$
- \mathcal{M}_0 , $(\mathcal{M}_1, \mathcal{M}_2)_{\rho}$
- \mathcal{M}_0 , $(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)_{\rho}$

resonances

• these and other options differ by ≤ 4 MeV in $\overline{m}_c(\overline{m}_c)$

Recent m_c determinations

Conclusions & outlook

$$\overline{m}_c(\overline{m}_c) = 1272 \pm 8 + 2616 [\overline{\alpha}_s(M_z) - 0.1182] MeV$$

- physically motivated continuum ansatz reproduces experimental data (normalization and moment dependence) very well
- < 0.7% theory uncertainty from pQCD near $\mu \approx 1$ GeV may seem optimistic
- but it is really $\approx 3\%$ in $\frac{1}{2} M_{J/\psi} \overline{m}_c(\overline{m}_c)$
- \Rightarrow expect $\approx 15 \text{ MeV in } \frac{1}{2} M_{\Upsilon(1S)} \overline{m}_b(\overline{m}_b)$ (in preparation)