Jet production at high precision using the CoLoRFulNNLO method

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with
A. Kardos, G. Somogyi and Z. Szőr

EPSHEP 2017, Venice
July 7, 2019

Fixed order

Problem

$$
\sigma_{m}^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}
$$

$$
\equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
$$

- the three contributions are separately divergent in $d=4$ dimensions:
- in $\sigma^{R R}$ kinematical singularities as one or two partons become unresolved yielding ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}\right.$, ϵ^{-1}) after integration over phase space, no explicit ϵ poles
- in $\sigma^{R V}$ kinematical singularities as one parton becomes unresolved yielding ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space + explicit ϵ-poles at $O\left(\epsilon^{-2}\right.$, ϵ^{-1})
- in $\sigma^{V V}$ explicit ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$

How to combine to obtain finite cross section?

Structure of subtractions

...is governed by the jet functions

$$
\sigma_{m}^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}+\sigma_{m+1}+\sigma_{m}
$$

$$
\begin{aligned}
\mathrm{d} \sigma_{m+2} & =\left\{\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\}_{\epsilon=0} \\
\mathrm{~d} \sigma_{m+1} & =\left\{\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\}_{\epsilon=0} \\
\mathrm{~d} \sigma_{m} & =\left\{\mathrm{d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\}_{\epsilon=0} J_{m}
\end{aligned}
$$

- RR, A_{2} regularizes doubly-unresolved limits
- $R R, A_{1}$ regularizes singly-unresolved limits
- RR, A 12 removes overlapping subtractions
- RV, A1 regularizes singly-unresolved limits

CoLoRFulNNLO is a subtraction scheme with

\checkmark fully local counter-terms
(efficiency and mathematical rigor)
\checkmark fully differential predictions (with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)
\checkmark option to constrain subtraction near singular regions (important check)

Completely Local SubtRactions for
Fully Differential Predictions@NNLO
$e^{+} e^{-} \rightarrow 3$ jets

Jet rates at NNLO accuracy

n-jet rate R_{n} is defined by the ratio

$$
R_{n}(\vec{a})=\frac{\sigma_{e^{+} e^{-} \rightarrow n \mathrm{jets}}(\vec{a})}{\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}}
$$

where \vec{a} is a set of jet resolution parameters in our example it is simply $\mathrm{y}_{\text {cut }}$ of
the exclusive k_{T} clustering algorithm

$$
R_{3}^{\mathrm{FO}}(\vec{a}, \mu)=\frac{\alpha_{\mathrm{S}}(\mu)}{2 \pi} A_{3}(\vec{a}, \mu)+\left(\frac{\alpha_{\mathrm{S}}(\mu)}{2 \pi}\right)^{2} B_{3}(\vec{a}, \mu)+\left(\frac{\alpha_{\mathrm{S}}(\mu)}{2 \pi}\right)^{3} C_{3}(\vec{a}, \mu)
$$

Jet rates at NNLO accuracy

Scale dependence of the three-jet rate R_{3} with 3-loop running unphysical for small $y_{c u t}$

Resummation

Jet rates at NDL accuracy

$$
\begin{aligned}
& a_{s}\left(M_{z}\right) \log ^{2}\left(1 / y_{\text {cut }}\right)=2.5 \text { for } a_{s}\left(M_{z}\right)=0.118 \text { and } y_{\text {cut }}=0.01 \\
& a_{s}\left(M_{z}\right) \log \left(1 / y_{\text {cut }}\right)=1 \text { for } a_{s}\left(M_{z}\right)=0.118 \text { and } y_{\text {cut }}=0.001
\end{aligned}
$$

need to sum up at least leading and next-to-leading logarithms ($L=\log (1 /$ ycut $)$) to all order in perturbation theory NLL(...) resummation formula:

$$
R^{\mathrm{NLL}}(L)=\exp \left(L g_{1}\left(\alpha_{\mathrm{S}} L\right)+g_{2}\left(\alpha_{\mathrm{S}} L\right)+\ldots\right) \mathcal{F}_{N L L}(L)
$$

for jet-rates only NDL resummation formula is known:

$$
R^{\mathrm{NDL}}(L)=\sum_{n=1}^{\infty} \alpha_{\mathrm{S}}^{n}\left(G_{n, 2 n} L^{2 n}+G_{n, 2 n-1} L^{2 n-1}+\mathcal{O}\left(L^{2 n-2}\right)\right)
$$

[Catani et al., Phys.Lett. B269 (1991) 432]

Jet rates at NDL accuracy

NDL resummation for the three-jet rates: correct only for asymptotically small values of $y_{\text {cut }}$

R-matching

Jet rates at FO+NDL accuracy

For NDL R-matching is the standard option, defined by

$$
R^{\mathrm{FO}+\mathrm{NDL}}=R^{\mathrm{NDL}}-R_{e x p}^{\mathrm{NDL}}+R^{\mathrm{FO}}
$$

with

$$
R_{e x p}^{\mathrm{NDL}}=\frac{\alpha_{\mathrm{S}}}{2 \pi} A_{e x p}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} B_{e x p}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3} C_{e x p}
$$

Jet rates at NNLO+NDL accuracy

R-matching for the three-jet rates:

$$
\text { unphysical for } y_{\text {cut }}<10^{-4}
$$

as a result of uncontrolled subleading logarithmic behavior

NLO+NDL vs NNLO+NDL

R-matching for the three-jet rates:

$$
\text { unphysical for } y_{\text {cut }}<10^{-4}
$$

as a result of uncontrolled subleading logarithmic behavior

...with cusp anomalous dimension in splitting kernels

[Nagy and ZT hep-ph/9708344]

$$
R_{3}^{\mathrm{NDL}+\mathrm{K}}\left(y_{\mathrm{cut}}\right)=\sum_{n=1}^{\infty} \alpha_{\mathrm{S}}^{n}\left(G_{n, 2 n} \log ^{2 n} y_{\mathrm{cut}}+G_{n, 2 n-1} \log ^{n-1} y_{\mathrm{cut}}+\mathcal{O}\left(\log ^{2 n-2} y_{\mathrm{cut}}\right)\right)
$$

R-matching for the three-jet rates:
still unphysical for $y_{\text {cut }}<10^{-4}$
as a result of uncontrolled subleading logarithmic behavior
logR-matching

$\log R$ matching for jet rates

For NDL \log R-matching can be defined by

$$
\log R^{\mathrm{FO}+\mathrm{NDL}}=\log R^{\mathrm{NDL}}-\left(\log R^{\mathrm{NDL}}\right)_{e x p}+\tilde{R}^{\mathrm{FO}}
$$

$$
\begin{gathered}
\text { with } \\
e^{\tilde{R}^{\mathrm{FO}}} \rightarrow \frac{\alpha_{\mathrm{S}}}{2 \pi} A^{\mathrm{FO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} B^{\mathrm{FO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3} C^{\mathrm{FO}}
\end{gathered}
$$

multiplicative matching instead of additive: provides correct asymptotic behavior at small ycut unphysical above the LO kinematic limit

R matching vs $\log R$ matching

the R matching and $\log R$ matching prescriptions give consistent predictions for $y_{\text {cut }}>10^{-3}$

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state, extension to hadronic collisions is in progress)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color (using color state formalism)
\checkmark Application: three rates in electron-positron annihilation
\checkmark numerical precision matches formal precision well
\checkmark NNLO matched to NDL with R and $\log R$ matching prescriptions
\Rightarrow higher logarithmic accuracy needed

Kinematic singularities cancel in RR

$R=$ subtraction/RR

Kinematic singularities cancel in RV

$R=$ subtraction/(RV+RR, $\left.A_{1}\right)$

Regularized RR \& RV contributions

can now be computed by numerical Monte Carlo integrations

(generalization to colored initial states is in progress)

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

$$
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\}
$$

$$
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\}
$$

$$
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m}
$$

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Integrated approximate xsections

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}= \int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}= \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}= \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m}
\end{aligned}
$$

After integrating over unresolved momenta \& summing over unresolved colors and flavors, the subtraction terms can be written as products of insertion operators (in color space) and lower point cross sections:

$$
\int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=\boldsymbol{I}_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right) \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
$$

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{3}^{\mathrm{VV}}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

$\mathcal{P o l e s}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{P o l e s} \sum \int \mathrm{d} \sigma^{\mathrm{A}}=200 \mathrm{k}$ Mathematica lines = zero numerically in any phase space point:

$\log R$ matching formulae

$$
\begin{aligned}
\left(\log R^{\mathrm{NDL}}\right)_{e x p} & =\log \frac{\alpha_{\mathrm{S}}}{2 \pi}+\log A_{e x p}+\frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{B_{e x p}}{A_{e x p}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} \frac{2 A_{e x p} C_{e x p}-B_{e x p}^{2}}{2 A_{e x p}^{2}} \\
& +\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3} \frac{B_{e x p}^{3}-3 A_{e x p} B_{e x p} C_{e x p}+2 A_{e x p}^{2} D_{e x p}}{3 A_{e x p}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{R}^{\mathrm{FO}} & =\log \frac{\alpha_{\mathrm{S}}}{2 \pi}+\log A_{F O}+\frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{B_{F O}}{A_{F O}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} \frac{2 A_{F O} C_{F O}-B_{F O}^{2}}{2 A_{F O}^{2}} \\
& +\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{3} \frac{B_{F O}^{3}-3 A_{F O} B_{F O} C_{F O}}{3 A_{F O}^{3}}
\end{aligned}
$$

