Jet production at high precision using the CoLoRFulNNLO method

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with

A. Kardos, G. Somogyi and Z. Szőr

EPSHEP 2017, Venice July 7, 2019

Fixed order

Problem

$$\sigma_{m}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}}$$

$$\equiv \int_{m+2} d\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} d\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} d\sigma_{m}^{\text{VV}} J_{m}$$

- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-4}, \ \epsilon^{-3}, \ \epsilon^{-2}, \ \epsilon^{-1})$ after integration over phase space, no explicit ϵ -poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$
 - in σ^{VV} explicit ϵ -poles at $O(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1})$ How to combine to obtain finite cross section?

Structure of subtractions

...is governed by the jet functions

$$\sigma_{m}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2} + \sigma_{m+1} + \sigma_{m}$$

$$d\sigma_{m+2} = \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_{2}} J_{m} - \left[d\sigma_{m+2}^{\text{RR}, A_{1}} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_{m} \right] \right\}_{\epsilon=0}$$

$$d\sigma_{m+1} = \left\{ \left[d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_{1}} \right] J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_{1}} \right)^{A_{1}} \right] J_{m} \right\}_{\epsilon=0}$$

$$d\sigma_{m} = \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left[d\sigma_{m+2}^{\text{RR}, A_{2}} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right] + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_{1}} \right)^{A_{1}} \right] \right\}_{\epsilon=0} J_{m}$$

- RR,A2 regularizes doubly-unresolved limits
- RR,A1 regularizes singly-unresolved limits
- RR,A₁₂ removes overlapping subtractions
- RV,A1 regularizes singly-unresolved limits

CoLoRFulNNLO is a subtraction scheme with

- √ fully local counter-terms

 (efficiency and mathematical rigor)
- √ fully differential predictions

 (with jet functions defined in d = 4)
- √ explicit expressions including flavor and color (color space notation is used)
- √ completely general construction
 (valid in any order of perturbation theory)
- √ option to constrain subtraction near singular regions (important check)

Completely Local SubtRactions for Fully Differential Predictions@NNLO

 $e^+e^- \rightarrow 3jets$

Jet rates at NNLO accuracy

n-jet rate R_n is defined by the ratio

$$R_n(\vec{a}) = \frac{\sigma_{e^+e^- \to n \text{ jets}}(\vec{a})}{\sigma_{e^+e^- \to \text{hadrons}}}$$

where \vec{a} is a set of jet resolution parameters in our example it is simply y_{cut} of the exclusive k_T clustering algorithm

$$R_3^{\text{FO}}(\vec{a}, \mu) = \frac{\alpha_{\text{S}}(\mu)}{2\pi} A_3(\vec{a}, \mu) + \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi}\right)^2 B_3(\vec{a}, \mu) + \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi}\right)^3 C_3(\vec{a}, \mu)$$

Jet rates at NNLO accuracy

Scale dependence of the three-jet rate R_3 with 3-loop running unphysical for small y_{cut}

Resummation

Jet rates at NDL accuracy

 $a_s(M_Z) \log^2(1/y_{cut}) = 2.5$ for $a_s(M_Z) = 0.118$ and $y_{cut} = 0.01$ $a_s(M_Z) \log(1/y_{cut}) = 1$ for $a_s(M_Z) = 0.118$ and $y_{cut} = 0.0001$

need to sum up at least leading and next-to-leading logarithms (L = log(1/ycut)) to all order in perturbation theory NLL(...) resummation formula:

$$R^{\mathrm{NLL}}(L) = \exp(Lg_1(\alpha_{\mathrm{S}}L) + g_2(\alpha_{\mathrm{S}}L) + \dots)\mathcal{F}_{NLL}(L)$$

for jet-rates only NDL resummation formula is known:

$$R^{\text{NDL}}(L) = \sum_{n=1}^{\infty} \alpha_{\text{S}}^{n} \left(G_{n,2n} L^{2n} + G_{n,2n-1} L^{2n-1} + \mathcal{O}(L^{2n-2}) \right)$$

[Catani et al., Phys.Lett. B269 (1991) 432]

Jet rates at NDL accuracy

NDL resummation for the three-jet rates: correct only for asymptotically small values of y_{cut}

R-matching

Jet rates at FO+NDL accuracy

For NDL R-matching is the standard option, defined by

$$R^{\text{FO+NDL}} = R^{\text{NDL}} - R_{exp}^{\text{NDL}} + R^{\text{FO}}$$

with

$$R_{exp}^{\text{NDL}} = \frac{\alpha_{\text{S}}}{2\pi} A_{exp} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right)^2 B_{exp} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right)^3 C_{exp}$$

Jet rates at NNLO+NDL accuracy

R-matching for the three-jet rates: unphysical for $y_{cut} < 10^{-4}$

as a result of uncontrolled subleading logarithmic behavior

NLO+NDL vs NNLO+NDL

R-matching for the three-jet rates: unphysical for $y_{cut} < 10^{-4}$

as a result of uncontrolled subleading logarithmic behavior

...with cusp anomalous dimension in splitting kernels

[Nagy and ZT hep-ph/9708344]

$$R_3^{\text{NDL+K}}(y_{\text{cut}}) = \sum_{n=1}^{\infty} \alpha_S^n \left(G_{n,2n} \log^{2n} y_{\text{cut}} + G_{n,2n-1} \log^{n-1} y_{\text{cut}} + \mathcal{O}(\log^{2n-2} y_{\text{cut}}) \right)$$

R-matching for the three-jet rates: still unphysical for $y_{cut} < 10^{-4}$

as a result of uncontrolled subleading logarithmic behavior

logR-matching

log R matching for jet rates

For NDL log R-matching can be defined by

$$\log R^{\text{FO+NDL}} = \log R^{\text{NDL}} - (\log R^{\text{NDL}})_{exp} + \tilde{R}^{\text{FO}}$$

with

$$e^{\tilde{R}^{\rm FO}} \to \frac{\alpha_{\rm S}}{2\pi} A^{\rm FO} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^2 B^{\rm FO} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^3 C^{\rm FO}$$

multiplicative matching instead of additive: provides correct asymptotic behavior at small y_{cut} unphysical above the LO kinematic limit

R matching vs log R matching

the R matching and log R matching prescriptions give consistent predictions for $y_{cut} > 10^{-3}$

Conclusions

Conclusions

- ✓ Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state, extension to hadronic collisions is in progress)
- √ Subtractions are
 - √ fully local
 - √ exact and explicit in color (using color state formalism)
- ✓ Application: three rates in electron-positron annihilation
 - √ numerical precision matches formal precision well
 - √ NNLO matched to NDL with R and log R matching prescriptions
 - igher logarithmic accuracy needed

Appendix

Kinematic singularities cancel in RR

R = subtraction/RR

Kinematic singularities cancel in RV

 $R = subtraction/(RV+RR,A_1)$

Regularized RR & RV contributions

can now be computed by numerical Monte Carlo integrations

(generalization to colored initial states is in progress)

$$\sigma^{\mathrm{NNLO}} = \sigma_{m+2}^{\mathrm{RR}} + \sigma_{m+1}^{\mathrm{RV}} + \sigma_{m}^{\mathrm{VV}} = \sigma_{m+2}^{\mathrm{NNLO}} + \sigma_{m+1}^{\mathrm{NNLO}} + \sigma_{m}^{\mathrm{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR,A}_{1}} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV,A}_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR,A}_{1}} \right)^{\text{A}_{1}} \right] J_{m} \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR,A}_{2}} - d\sigma_{m+2}^{\text{RR,A}_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV,A}_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR,A}_{1}} \right)^{\text{A}_{1}} \right] \right\} J_{m}$$

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Integrated approximate xsections

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_2} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] \right\} J_{m}$$

After integrating over unresolved momenta & summing over unresolved colors and flavors, the subtraction terms can be written as products of insertion operators (in color space) and lower point cross sections: $\int \mathrm{d}\sigma^{\mathrm{RR},\mathrm{A}_p} = \boldsymbol{I}_p^{(0)}(\{p\}_n;\epsilon) \otimes \mathrm{d}\sigma_n^{\mathrm{B}}$

Example: $e^+e^- \rightarrow m(=3)$ jets at $\mu^2 = s$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left[d\sigma_{m+2}^{\text{RR}, A_{2}} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right] + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_{1}} \right)^{A_{1}} \right] \right\} J_{m}$$

$$d\sigma_{3}^{\text{VV}} = \mathcal{P}oles \left(A_{3}^{(2 \times 0)} + A_{3}^{(1 \times 1)} \right) + \mathcal{F}inite \left(A_{3}^{(2 \times 0)} + A_{3}^{(1 \times 1)} \right)$$

$$\mathcal{P}oles \left(A_{3}^{(2 \times 0)} + A_{3}^{(1 \times 1)} \right) + \mathcal{P}oles \sum_{1} \int d\sigma_{m}^{\text{A}} d\sigma_{m}^{\text{A}} = 200 \text{k Mathematica lines}$$

= zero numerically in any phase space point:

log R matching formulae

$$(\log R^{\text{NDL}})_{exp} = \log \frac{\alpha_{\text{S}}}{2\pi} + \log A_{exp} + \frac{\alpha_{\text{S}}}{2\pi} \frac{B_{exp}}{A_{exp}} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right)^{2} \frac{2A_{exp}C_{exp} - B_{exp}^{2}}{2A_{exp}^{2}} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right)^{3} \frac{B_{exp}^{3} - 3A_{exp}B_{exp}C_{exp} + 2A_{exp}^{2}D_{exp}}{3A_{exp}^{3}} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right)^{3} \frac{B_{exp}^{3} - 3A_{exp}B_{exp}C_{exp} + 2A_{exp}^{2}D_{exp}}{3A_{exp}^{3}}$$

$$\tilde{R}^{FO} = \log \frac{\alpha_{S}}{2\pi} + \log A_{FO} + \frac{\alpha_{S}}{2\pi} \frac{B_{FO}}{A_{FO}} + \left(\frac{\alpha_{S}}{2\pi}\right)^{2} \frac{2A_{FO}C_{FO} - B_{FO}^{2}}{2A_{FO}^{2}} + \left(\frac{\alpha_{S}}{2\pi}\right)^{3} \frac{B_{FO}^{3} - 3A_{FO}B_{FO}C_{FO}}{3A_{FO}^{3}}$$