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Problem
�NNLO = �RR
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m Jm

‣ the three contributions are separately divergent in  d = 4 
dimensions: 
- in σRR kinematical singularities as one or two partons 

become unresolved yielding ε-poles at O(ε-4, ε-3, ε-2, 
ε-1) after integration over phase space, no explicit ε-
poles 

- in σRV kinematical singularities as one parton becomes 
unresolved yielding ε-poles at O(ε-2, ε-1) after 
integration over phase space + explicit ε-poles at O(ε-2, 
ε-1) 

- in σVV explicit ε-poles at O (ε-4, ε-3, ε-2, ε-1) 
How to combine to obtain finite cross section? 

m
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Structure of subtractions

…is governed by the jet functions

RR,A2 regularizes doubly-unresolved limits 
RR,A1 regularizes singly-unresolved limits 
RR,A12 removes overlapping subtractions 
RV,A1 regularizes singly-unresolved limits
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CoLoRFulNNLO is a subtraction scheme with

✓ fully local counter-terms                       
(efficiency and mathematical rigor) 

✓ fully differential predictions                      
(with jet functions defined in d = 4) 

✓ explicit expressions including flavor and color 
(color space notation is used) 

✓ completely general construction                  
(valid in any order of perturbation theory) 

✓ option to constrain subtraction near singular 
regions (important check) 

Completely Local SubtRactions for  
Fully Differential Predictions@NNLO



e+e- → 3jets
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Jet rates at NNLO accuracy

n-jet rate Rn is defined by the ratio

Jet rates

Relative production rate of n-jets

R
n

(~a) =
�
e

+
e

�!n jets

(~a)

�
e

+
e

�!hadrons

(2)

where ~a is some set of jet resolution
parameters.

I Jets are defined according to jet
clustering algorithms.

I Two type of jet algorithms: cone
algorithms (usually infrared unsafe) and
sequential algorithms.

I Top algorithm at LEP/LHC: k?/anti-k?
Figure: e+e� annihilation into
three jets captured by the OPAL
experiment

Fixed order calculations for k? and anti-k? are available at NNLO and
next-to-double logarithmic resummation is known as well but no matched
predictions for either at

p
Q2

= 91.2 GeV.
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where a is a set of jet resolution parameters 
in our example it is simply ycut of  

the exclusive kT  clustering algorithm
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Fixed-order predictions for the three-jet rate

The three-jet rate in perturbation theory up to NNLO accuracy

RFO
3 (~a, µ) =

↵S(µ)

2⇡
A3(~a, µ)+

✓
↵S(µ)

2⇡

◆2

B3(~a, µ)+

✓
↵S(µ)

2⇡

◆3

C3(~a, µ) (16)

I ~a = ycut for k? and ~a = (ycut, Ecut) for anti-k?
I

p
Q2

= 91.1 GeV and Ecut = [0.077, 0.0385]
p

Q2

I ↵S(µ) evaluated by the three-loop running formula
I Calculations performed with the MCCSM partonic Monte Carlo program.
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Jet rates at NNLO accuracy

Scale dependence of the three-jet rate R3 with 3-loop running 
unphysical for small ycut
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Resummation
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Jet rates at NDL accuracy

αs(MZ) log2(1/ycut) = 2.5 for αs(MZ) = 0.118 and ycut = 0.01  
αs(MZ) log(1/ycut) = 1 for αs(MZ) = 0.118 and ycut = 0.0001 

need to sum up at least leading and next-to-leading logarithms  
(L = log(1/ycut)) to all order in perturbation theory 

NLL(…) resummation formula:

Accuracy of resummation
NLL vs. NDL

Next-to-leading logarithmic accuracy (NLL)

RNLL
(L) = exp(Lg1(↵SL) + g2(↵SL) + . . . )F

NLL

(L) , (17)

with L = log~a. Next-to-double logarithmic accuracy (NDL)

RNDL
(L) =

1X

n=1

↵n

S

⇣
G

n,2nL
2n

+G
n,2n�1L

2n�1
+O(L2n�2

)

⌘
(18)

Eq. (17) contains more information compared to Eq. (18).

For jet rates F
NLL

is not known, only NDL resummation is available both
for k?

3 and anti-k?4.

3[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]
4[Gerwick, Gripaios, Schumann, Webber ’13]
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for jet-rates only NDL resummation formula is known:

[Catani et al., Phys.Lett. B269 (1991) 432]  
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Jet rates at NDL accuracy

NDL resummation for the three-jet rates: 
correct only for asymptotically small values of ycut
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R-matching
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Jet rates at FO+NDL accuracy

For NDL R-matching is the standard option, defined by

Matching schemes

R-matching :
RFO+NDL

= RNDL �RNDL
exp

+RFO , (25)

where

RNDL
exp

=

↵S

2⇡
A

exp

+

✓
↵S

2⇡

◆2

B
exp

+

✓
↵S

2⇡

◆3

C
exp

(26)

Unknown subleading logs can spoil the expected physical behaviour.
Maybe try to fit subleading logs from fixed order predictions.

log(R) matching :

logRFO+NDL
= logRNDL � (logRNDL

)

exp

+

˜RFO (27)

eR̃
FO ! ↵S

2⇡
AFO

+

✓
↵S

2⇡

◆2

BFO
+

✓
↵S

2⇡

◆3

CFO (28)

Less sensitive for missing subleading logarithms.
Might be possible for jet rates.
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Jet rates at NNLO+NDL accuracy

R-matching for the three-jet rates:  
unphysical for ycut < 10-4 

as a result of uncontrolled  subleading logarithmic behavior
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NLO+NDL vs NNLO+NDL

R-matching for the three-jet rates:  
unphysical for ycut < 10-4 

as a result of uncontrolled  subleading logarithmic behavior  
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…with cusp anomalous dimension in splitting kernels 
[Nagy and ZT hep-ph/9708344]

R-matching for the three-jet rates:  
still unphysical for ycut < 10-4 

as a result of uncontrolled  subleading logarithmic behavior

Resummation of next-to-double logarithms - k? algorithm
Variaties

Original:

RNDL
3 (ycut) =

1X

n=1

↵n

S

⇣
G

n,2n log

2n ycut+G
n,2n�1 log

n�1 ycut+O(log

2n�2 ycut)
⌘

(22)

[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]

Including the cusp anomalous dimension into the decay rates:

RNDL+K
3 (ycut) =

1X

n=1

↵n

S

⇣
G

n,2n log

2n ycut+G
n,2n�1 log

n�1 ycut+O(log

2n�2 ycut)
⌘

(23)

[Nagy, Trócsányi ’98]

Approximate analytic solution for R3

RNDL,A
3 (ycut) =

1X

n=1

↵n

S

⇣
G

n,2n log

2n ycut +G
n,2n�1 log

n�1 ycut
⌘

(24)

[Lovett-Turner ’94]

Which one to use?
19 / 31
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log R matching for jet rates

For NDL log R-matching can be defined by

with

Matching schemes

R-matching :
RFO+NDL

= RNDL �RNDL
exp

+RFO , (25)

where
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multiplicative matching instead of additive: 
provides correct asymptotic behavior at small ycut 

unphysical above the LO kinematic limit
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R matching vs log R matching

the R matching and log R matching prescriptions 
give consistent predictions for ycut > 10-3
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Conclusions
✓ Defined a general subtraction scheme for computing 

NNLO fully differential jet cross sections (presently only 
for processes with no colored particles in the initial state, 
extension to hadronic collisions is in progress) 

✓ Subtractions are 
✓ fully local 
✓ exact and explicit in color (using color state 

formalism) 

✓ Application: three rates in electron-positron annihilation 

✓ numerical precision matches formal precision well 
✓ NNLO matched to NDL with R and log R matching 

prescriptions 
➡ higher logarithmic accuracy needed
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Kinematic singularities cancel in RR

R = subtraction/RR
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Kinematic singularities cancel in RV

R = subtraction/(RV+RR,A1)
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Regularized RR & RV contributions

�NNLO = �RR
m+2 + �RV

m+1 + �VV
m = �NNLO

m+2 + �NNLO
m+1 + �NNLO

m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 

Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

can now be computed by numerical Monte 
Carlo integrations                           

(generalization to colored initial states is in progress)
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Integrated approximate xsections
�NNLO = �RR

m+2 + �RV
m+1 + �VV

m = �NNLO
m+2 + �NNLO

m+1 + �NNLO
m

�NNLO
m+2 =

⇤

m+2
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d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
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m+2 Jm

⇥⌥
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⇤
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⇥
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� ⇤
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⇧
Jm

⌥

�NNLO
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⇤

m
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d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm

After integrating over unresolved momenta & summing 
over unresolved colors and  flavors, the subtraction 
terms can be written as products of insertion 
operators (in color space) and lower point cross 
sections:

Z

p
d�RR,Ap = I(0)

p ({p}n; ✏)⌦ d�B
n
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Example: e+e-→ m(=3) jets at µ2 = s
�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i
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Z
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⇣
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A1
io
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d�VV
3 = Poles

�
A

(2⇥0)
3 +A
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�
+ Finite

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
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�
A
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3 +A
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3

�
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XZ
d�A= 200k Mathematica lines

= zero numerically in any phase space point:
             0.         2   0. nf
        0. + --- + 0. Nc  + ----- + 0. Nc nf
               2             Nc
             Nc
Out[1]= ------------------------------------ + 
                          2
                         e

          0.          2  0. nf
     0. + --- + 0. Nc  + ----- + 0. Nc nf
            2              Nc
          Nc                                          0
----------------------------------------------- + O[e]
                    e               



28

log R matching formulae

logR-matching scheme for jet rates

Zoltán Szőr

June 30, 2017

logR

FO+NDL
= logR

NDL � (logR

NDL
)exp +

˜

R

FO
(1)

where

(logR

NDL
)exp = log

↵S

2⇡

+ logAexp +
↵S

2⇡

Bexp

Aexp

+

✓
↵S

2⇡

◆2
2AexpCexp � B

2
exp

2A

2
exp

+

✓
↵S

2⇡

◆3
B

3
exp � 3AexpBexpCexp + 2A

2
expDexp

3A

3
exp

(2)

and

˜

R

FO
= log

↵S

2⇡

+ logAFO +

↵S

2⇡

BFO

AFO

+

✓
↵S

2⇡

◆2
2AFOCFO � B

2
FO

2A

2
FO

+

✓
↵S

2⇡

◆3
B

3
FO � 3AFOBFOCFO

3A

3
FO

(3)

A, B and so on are the fixed-order coefficients of the ↵S expansion.

After exponentialization we get

R

FO+NDL
= R

NDLAFO

Aexp

exp


↵S

2⇡

✓
BFO

AFO

� Bexp

Aexp

◆
+

✓
↵S

2⇡

◆2✓
2AFOCFO � B

2
FO

2A

2
FO

�
2AexpCexp � B

2
exp

2A

2
exp

◆

+

✓
↵S

2⇡

◆3✓
B

3
FO � 3AFOBFOCFO

3A

3
FO

�
B

3
exp � 3AexpBexpCexp + 2A

2
expDexp

3A

3
exp

◆�

(4)

1

logR-matching scheme for jet rates

Zoltán Szőr

June 30, 2017

logR

FO+NDL
= logR

NDL � (logR

NDL
)exp +

˜

R

FO
(1)

where

(logR

NDL
)exp = log

↵S

2⇡

+ logAexp +
↵S

2⇡

Bexp

Aexp

+

✓
↵S

2⇡

◆2
2AexpCexp � B

2
exp

2A

2
exp

+

✓
↵S

2⇡

◆3
B

3
exp � 3AexpBexpCexp + 2A

2
expDexp

3A

3
exp

(2)

and

˜

R

FO
= log

↵S

2⇡

+ logAFO +

↵S

2⇡

BFO

AFO

+

✓
↵S

2⇡

◆2
2AFOCFO � B

2
FO

2A

2
FO

+

✓
↵S

2⇡

◆3
B

3
FO � 3AFOBFOCFO

3A

3
FO

(3)

A, B and so on are the fixed-order coefficients of the ↵S expansion.

After exponentialization we get

R

FO+NDL
= R

NDLAFO

Aexp

exp


↵S

2⇡

✓
BFO

AFO

� Bexp

Aexp

◆
+

✓
↵S

2⇡

◆2✓
2AFOCFO � B

2
FO

2A

2
FO

�
2AexpCexp � B

2
exp

2A

2
exp

◆

+

✓
↵S

2⇡

◆3✓
B

3
FO � 3AFOBFOCFO

3A

3
FO

�
B

3
exp � 3AexpBexpCexp + 2A

2
expDexp

3A

3
exp

◆�

(4)

1


