Does Nature know about perturbation theory? A study of HERA data at low Q²

Hansestadt Hamburg Team:

I. Abt, A. Cooper-Sarkar, B. Foster, V. Myronenko, <u>K. Wichmann</u>, M. Wing Phys. Rev. D 94, 034032 (2016), DESY-17-051 (accepted by PRD)

Acknowledgements

We would like to thank Halina Abramowicz and Aharon Levy for discussions about ALLM and Barbara Badełek and Anna Stasto for the discussions on the BKS model and their help in providing their results numerically. We would like to thank Paul Newman for discussions on Regge phenomenology. We thank our funding agencies, especially the Humboldt foundation and the MPG, for financial support and DESY for the hospitality extended to the non-DESY authors.

Deep Inelastic Scattering at HERA

 $s = (p+k)^2$ $Q^2 = xys$

~ 0.5fb⁻¹ data from each experiment

DESY

$\textcircled{\ } \text{HERA low } Q^2 \rightarrow \text{low } x$

$6.21 \cdot 10^{-7} \le x_{Bj} \le 0.65$ $0.045 \le Q^2 \le 30000 \,\text{GeV}^2$

DESY

K. Wichmann

DESY

EPS'17

Nature & pQCD

HERAPDF2.0 @ low Q^2 and low x

HERA low Q², low x data are not described very well by predictions @
 NLO and NNLO

Higher-twist corrections

Phys. Rev. D 94, 034032 (2016)

- higher twist terms acting at low-x considered
- their origin COULD be connected with the recombination of gluon ladders
- Bartels, Golec-Biernat, Peters suggested that such higher twist terms would cancel between σ_L and σ_T in F_2 , but remain strong in F_L
- simplest possible modification to structure functions F_2 and F_L as calculated from HERAPDF2.0 formalism tried

$$\begin{array}{ll} F_2^{\rm HT} &= F_2^{\rm DGLAP} & (1 + |A_2^{\rm HT}|/Q^2) & \xrightarrow{\rightarrow} \mbox{ has almost no effect,} \\ F_L^{\rm HT} &= F_L^{\rm DGLAP} & (1 + |A_L^{\rm HT}|/Q^2) & \xrightarrow{\rightarrow} \mbox{ helps a lot, } A \sim 4-5 \end{array}$$

K. Wichmann

Let's be bold and fit from $Q^2 = 2 GeV^2$

Look at the excellent description at low Q^2

DESY

K. Wichmann

F_L measurements & predictions

- Various predictions compared to unbiased extraction of F_L
- NNLO HHT FL prediction untamed at low Q²
- this approach cannot be pushed too far
- this comes from NNLO coeff. functions and 1/Q² term makes it worse

The overlap region between soft and hard physics is of particular interest

Does Nature know about pQCD?

K. Wichmanr

EPS'17

Nature

e & pQCD

Reduced cross sections

EPS

17

Nature

20

Possible parameterisations

Wichmann

EPS

$\sigma^{\gamma^{*p}}$ for selected W values

- $\sigma^{\gamma^{\star p}}$ extracted with HHT NNLO and BKS depending on Q²
- Points connect smoothly at change-over value of 2 GeV²
- Low & high Q² behavior differs \rightarrow at high Q² $\sigma^{\gamma^* p}$ drops as $1/Q^2$ \rightarrow at low Q² $\sigma^{\gamma^* p}$ flattens out
- Good description by HHT-ALLM and Regge fits (fits very similar)

Extracting λ and C parameters

- HHT NNLO: Q^2 > 1.2 GeV^2 \rightarrow good down to ~2 GeV²
- BKS: Q² < 2.7 GeV² \rightarrow connects smoothly to HHT NNLO ~2 GeV²
- \rightarrow Different in overlap region

- HHT-ALLM describes
- REGGE fit good up to ~0.5 GeV²
- λ can be fit with 1st or 2nd order polynomial
- → Same conclusions for C (figure in backup slides)

$$F_{2} = C(Q^{2})x_{Bj}^{-\lambda(Q^{2})} \quad x_{Bj} < 0.01$$

DESY

~

Wichmann

EPS

F_2 at lowest x_{Bj}

K. Wichn

 As x_{Bj} falls, growing gap opens up between pQCD and Regge extrapolations in transition region

This gap is smoothly bridged by data!

Region of very low
 x_{Bj} pinpointed

Summary & Outlook

- HERA low-Q² low-x data well described by simple twist 4 term at F_L \rightarrow however for lowest Q² F_L gets unphysical
- Structure-function F_{2} and photon-proton cross section $\sigma^{_{\gamma^{\ast p}}} extracted$
 - Using HHT NNLO in pQCD region Q² > 2 GeV²
 - Using Regge-inspired BKS for Q² < 2 GeV²

 \rightarrow data agree well around this transition point

- Characteristics of F_2 , σ^{γ^*p} and $dF_2/dlnQ^2$ studied in detail
- Data well described by HHT NNLO, HHT-ALLM and HHT-REGGE fits
- \rightarrow No abrupt transition between soft and hard regions observed in the data \rightarrow Nature seems not to know about perturbation theory
- Future electron-proton/electron-ion collider needed
- Presented data important for model building @ low x and low Q²

K. Wichmann

DESY

EPS'17

Additional slides

17

Data in fits from $Q^2 > 3.5 \text{ GeV}^2$

$$\begin{array}{c} \text{HERAPDF2.0} & \text{NLO} & \frac{\chi^2}{ndf} = \frac{1356}{1131} \approx 1.20 \\ \text{NNLO} & \frac{\chi^2}{ndf} = \frac{1363}{1131} \approx 1.21 \end{array}$$

$$\begin{array}{c} \text{Introducing} \quad F_2^{HT} = F_2^{DGLAP}(1 + \frac{A_2^{HT}}{Q^2}) \quad \text{has almost no effect, A consistent with 0} \\ \text{HHT} \otimes F_2 & \text{NLO} & \frac{\chi^2}{ndf} = \frac{1354}{1130} \approx 1.20 \\ \text{NNLO} & \frac{\chi^2}{ndf} = \frac{1357}{1130} \approx 1.20 \\ \text{NNLO} & \frac{\chi^2}{ndf} = \frac{1357}{1130} \approx 1.20 \\ \text{Introducing} \quad F_L^{HT} = F_L^{DGLAP}(1 + \frac{A_L^{HT}}{Q^2}) \quad \text{helps a lot} \\ \text{HHT} \otimes F_L & \text{NLO} & \frac{\chi^2}{ndf} = \frac{1329}{1130} \approx 1.18 \\ \text{HHT} \otimes F_L & \text{NLO} & \frac{\chi^2}{ndf} = \frac{1316}{1130} \approx 1.16 \\ \end{array}$$

DESY

K. Wichmann

EPS'17

Nature & pQCD

Let's be bold and fit from $Q^2 = 2 \text{ GeV}^2$ $Q^2_{min} = 3.5 \text{ GeV}^2$ $Q^2_{min} = 2 \text{ GeV}^2$ $Q^2_{min} = 2 \text{ GeV}^2$ $A_L^{HT} = 4.2 \pm 0.7 \text{ GeV}^2$ $A_L^{HT} = 5.5 \pm 0.6 \text{ GeV}^2$ $A_L^{HT} = 5.2 \pm 0.7 \text{ GeV}^2$

DESY

~

Wichmann

DESY

ALLM parameterisation

How about Regge phenomenology?

HHT-REGGE fits

×. <

- With addition of low-W PhP data Reggeon parameters can be constrained
- Within kinematic range of HERA data description the same
- Adding fixed target data does not improve fits

Regge fits

Name	Fit Parameters					$\chi^2/$
of Fit	$M_0^2 ({ m GeV}^2)$	$A_{I\!P}$ (μ b)	$\alpha_{I\!P}(0)$	$A_{I\!\!R}(\mu b)$	$\alpha_{I\!\!R}(0)$	ndf
HHT-REGGE	0.50 ± 0.03	66.3 ± 3.2	1.097 ± 0.004	fixed to 0	—	0.83
3p85	0.58 ± 0.03	58.5 ± 2.5	1.105 ± 0.003	fixed to 0	_	1.13
4p	0.49 ± 0.03	78.5 ± 7.1	1.082 ± 0.008	-230 ± 105	fixed to 0.5	0.78
FT-4p	0.50 ± 0.02	77.4 ± 5.6	1.083 ± 0.006	-217 ± 60	fixed to 0.5	0.75
PHP-5p	0.52 ± 0.01	57.0 ± 4.7	1.110 ± 0.007	193 ± 51	0.50 ± 0.11	1.16
PHP-FT-5p	0.48 ± 0.01	58.9 ± 3.0	1.110 ± 0.005	263 ± 69	0.39 ± 0.09	1.35
ZEUSREGGE	fixed to 0.53	63.5 ± 0.9	1.097 ± 0.002	145 ± 2	fixed to 0.5	1.12
update	0.52 ± 0.04	62.0 ± 2.3	1.102 ± 0.007	148 ± 5	fixed to 0.5	_

DESY

Pomeron trajectory soft Pomeron:

$$\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP} \cdot t$$

$$\alpha_{IP}(0) \approx 1.08$$

23

DESY

K. Wichmann

DESY

~

Wichmann

HERA and DIS

- HERA: ep collider in Hamburg
- Operation: 1992-2007
- Colliding experiments: H1 and ZEUS

EPS

17

Nature & pQCD

DESY

HERAPDF2.0 @ low Q² and low x

DESY

Text book plots of fundamental properties of particle interactions

F_L measurements & predictions

- NNLO HHT FL prediction untamed at low Q²
- this approach cannot be pushed too far
- this comes from NNLO coeff. functions and the $1/Q^2$ term makes it worse

DESY

 \mathbf{x}

Wichmann

HERAPDF2.0: settings for QCD fit

- QCD fits are performed using HERAFitter package
- PDFs (14p) are parametrised at $Q_0^2 = 1.9 \text{ GeV}^2$

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \left(1+D_{\overline{U}} x\right), \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}. \end{aligned}$$

 $\stackrel{\bullet}{\bullet} A_{u_v}, A_{d_v}, A_g \text{ are constrained by QCD sum rules}$ $\stackrel{\bullet}{\bullet} x \overline{u} \stackrel{x \to 0}{\to} x \overline{d} \qquad \stackrel{\bullet}{\bullet} A_{\overline{U}}, A_{\overline{D}} \text{ are constrained via } x \overline{s} = f_s x \overline{D}$

PDF evolution is performed using DGLAP equations

Heavy flavour coeffitients are obtained within GM VFNS (RT OPT)

$$\chi^{2} = \sum_{i} \frac{\left[\mu_{i} - m_{i}\left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)\right]^{2}}{\delta_{i, uncor}^{2} m_{i}^{2} + \delta_{i, stat}^{2} \mu_{i} m_{i}\left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)} + \sum_{j} b_{j}^{2} + \sum_{i} \ln \frac{\delta_{i, uncor}^{2} m_{i}^{2} + \delta_{i, stat}^{2} \mu_{i} m_{i}}{\delta_{i, uncor}^{2} \mu_{i}^{2} + \delta_{i, stat}^{2} \mu_{i}^{2}}$$

Volodymyr Myronenko | 13.04.2016 | DIS16 | Combined QCD and EW analysis of HERA data

Color decomposition of uncertainties

Parametrisation uncertainties
 largest deviation

Model uncertainties

- all variations added in quadrature

Experimental uncertainties:

- Hessian method
- Conventional $\Delta\chi^2$ = 1 => 68% CL

Variation	Standard Value	Lower Limit	Upper Limit			
Q_{\min}^2 [GeV ²]	3.5	2.5	5.0			
$Q_{\rm min}^2$ [GeV ²] HiQ2	10.0	7.5	12.5			
$M_c(\rm NLO)$ [GeV]	1.47	1.41	1.53			
M_c (NNLO) [GeV]	1.43	1.37	1.49			
M_b [GeV]	4.5	4.25	4.75			
f_s	0.4	0.3	0.5			
μ_{f_0} [GeV]	1.9	1.6	2.2			
Adding D and E parameters to each PDF						

DESY

~

Wichmann

Deep Inelastic Scattering @ HERA *l(l* Fix pQCD & PDFs • Electroweak ! Test Electroweak Fix Electroweak ! Test pQCD & PDFs Perturbative QCD Fix Electroweak & pQCD ! Determine PDFs **PDFs** at Q

DESY

<u>~</u>

Wichmann

EPS'17

Nature & pQCD