

Contribution ID: 462 Type: Parallel Talk

New mechanisms in the production of two J/ψ quarkonia in proton-proton scattering at the LHC.

Saturday, 8 July 2017 10:30 (15 minutes)

The presentation will be based on our paper in preparation [1].

We discuss production of pairs of J/ψ in pp collisions in the context

of recent results obatained at the LHC at large transverse momenta.

The leading-order $O(\alpha_s^4)$ contribution

is calculated in both collinear and the $k_t\mbox{-factorization}$ approach

with the KMR UGDF.

We include also two-gluon exchange contribution

 $(O(\alpha_s^6))$ (not included routinely).

This contribution is calculated only in the collinear approximation.

In addition we calculate cross sections for

 $pp \to \chi_c(J_1)\chi_c(J_2)$.

A feed-down from double χ_c production to double J/ψ

production is estimated for a first time.

The double parton scattering cross section and differential

distributions are calculated using a parametrization

of experimental J/ψ differential distributions in rapidity

and transverse momentum.

Results of our calculations are compared with very recent ATLAS data [2].

We find that the two-gluon exchange mechanism and feed down from

double χ_c production lead to very similar

distributions in rapidity distance between the J/ψ

mesons as for DPS.

Much larger cross sections are obtained in the k_t -factorization approach.

Including the mechanisms leaves much less room for the DPS contribution which cannot be calculated from first principle.

The σ_{eff} parameter for DPS needed to describe the ATLAS data

is much larger than from previous analyses of double

quarkonium production, where a smaller number of mechanisms was included.

We present distributions in rapidity distance, two J/ψ invariant

mass, azimuthal angle correlations between the two J/ψ mesons

and transverse momentum of the pairs of quarkonia.

Ihe sum of the four considered contributions reminds

experimental ATLAS distributions.

1) A. Cisek, W. Sch\"afer and A. Szczurek, a paper in preparation.

2) ATLAS collaboration,

CERN-EP-2016-211, arXiv:161202950.

Experimental Collaboration

Primary authors: SZCZUREK, Antoni (Institute of Nuclear Physics); SCHAEFER, Wolfgang (Institute of

Nuclear Physics PAN)

Presenters: SZCZUREK, Antoni (Institute of Nuclear Physics); SCHAEFER, Wolfgang (Institute of Nuclear

Physics PAN)

Session Classification: QCD and hadronic physics

Track Classification: QCD and Hadronic Physics