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#Massless #QuarkAntiquarkBoundState

For ground-state pseudoscalar mesons their description as quark–antiquark

bound states must reflect their near masslessness demanded by Goldstone’s

theorem for bosons connected to dynamical (and explicit) breaking of chiral

symmetries of quantum chromodynamics, the theory of strong interactions.

The underlying effective interactions enabling such common picture may be

elucidated by inversion[1,2] of the Bethe–Salpeter (BS) formalism, suitably

simplified by adequate three-dimensional (3D) reductions [3,4]. From these,

we gain information [5–7] in form of central potentials [8–10] V (r), r ≡ |x|.

Strictly respecting Poincaré covariance, the homogeneous BS equation

describing bound states of a fermion f and an antifermion f of momenta pf,f,

Φ(p) ∝ Sf(pf)

∫
d4q K(p, q) Φ(q)Sf(−pf) ,

is defined by its integral kernelK(p, q), subsuming the effective interactions

forming these bound states, and two bound-state constituents’ propagators

S(p) =
iZ(p2)

6p−M(p2) + i ε
, 6p ≡ pµ γµ , ε ↓ 0 ,

each involving two functions: the fermion’s massM(p2) and wave-function

renormalization Z(p2). The solutions, the BS amplitudes Φ(p), capture the

distribution of the fermions’ relative momenta p. For simplicity, we skip the

state’s total momentum and assume the fermions to carry the same flavour.
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3D-reduced Bethe–Salpeter formalism . . .

If the BS kernel only involves spatial components of both relative momenta,

K(p, q) = K(p, q), and the dependence of the propagator functionsM(p2)

and Z(p2) on p20 can be dropped, integrating w.r.t. p0 casts the BS equation

into a bound-state equation[3] for a Salpeter amplitude φ(p) ∝
∫
dp0Φ(p),

φ(p) = Z2(p2)

(
Λ+(p) γ0 I(p) Λ

−(p) γ0

M̂ − 2E(p)
−

Λ−(p) γ0 I(p) Λ
+(p) γ0

M̂ + 2E(p)

)
,

with one-fermion free energies and projectors (henceforth p ≡ |p|, q ≡ |q|)

E(p) ≡
√
p2 +M 2(p2) , Λ±(p) ≡

E(p)± γ0 [γ · p +M(p2)]

2E(p)
,

and the (by assumption now instantaneous) interactions entering in form of

I(p) ∝

∫
d3q K(p, q)φ(q) .

The action ofK(p, q) on φ(q) may be expanded in tensor products Γ⊗Γ of

(generalized) Dirac matrices Γ identifying its Lorentz nature and associated

Lorentz-scalar functions VΓ(p, q) encoding all the momentum dependence:

K(p, q)φ(q) =
∑

Γ

VΓ(p, q) Γφ(q) Γ .

In the free-constituent-propagator caseM(p2) = const and Z(p2) = 1, this

bound-state equation reduces to, hence generalizes, Salpeter’s equation[11].

. . . and its Dyson–Schwinger-based inverse

In order to define a well-posed inversion problem, we have to be a little more

specific about the physical systems we interested in: We study bound states

of quark and associated antiquark. For all pseudoscalar bound states of two

fermions of spin 1
2
, the total-spin and orbital-angular-momentum quantum

numbers both inevitably vanish; as a consequence, their Salpeter amplitude

is fixed by only two independent components ϕ1,2(p) and can be written as

φ(p) =

[
ϕ1(p)

γ0 [γ · p +M(p2)]

E(p)
+ ϕ2(p)

]
γ5 .
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The ansatz 2 Γ⊗Γ = γµ⊗γµ+γ5⊗γ5−1⊗1 ensures the Fierz symmetry of

the effective interactions. Assuming the latter to be encoded in a spherically

symmetric convolution-type potential V ((p−q)2) prompts us to discard all

(then trivial) angular-variable dependences, allowing us to condense our 3D

bound-state equation to two coupled equations for the radial factors ϕ1,2(p)

of the independent components; one of the two relations is purely algebraic:

2E(p)ϕ2(p) + 2Z2(p2)

∞∫

0

dq q2

(2π)2
V (p, q)ϕ2(q) = M̂ ϕ1(p) ,

2E(p)ϕ1(p) = M̂ ϕ2(p) .

wherein M̂ is the bound-state mass and the potential V (r) enters in form of

V (p, q) ∝
1

p q

∞∫

0

dr sin(p r) sin(q r)V (r) .

For mass M̂ = 0, characteristic of Goldstone bosons, the algebraic equation

forces ϕ1(p) to vanish and the remaining component ϕ2(p) is determined by

E(p)ϕ2(p) + Z2(p2)

∞∫

0

dq q2

(2π)2
V (p, q)ϕ2(q) = 0 .

Denoting, for Z(p2) 6= 0, the Fourier transform of the effective kinetic term

E(p)ϕ2(p)/Z
2(p2) by T (r), V (r) is easily extracted in configuration space:

T (r) + V (r)ϕ2(r) = 0 =⇒ V (r) = −
T (r)

ϕ2(r)
.

Application to Light Pseudoscalar Mesons

Gauge invariance of a quantum field theory entails identities that relate this

theory’s Green functions; one of these Euclidean-space identities relates the

rest-frame BS amplitude for massless pions and the quark propagator[5,12]:

Φ(k) ∝
Z(k2)M(k2)

k2 +M 2(k2)
γ
5
+ subleading contributions .
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This serendipitous finding enables the construction of Φ(k) by knowledge of

M(k2) and Z(k2). These functions may be found by solving the equation of

motion of the quark propagator: for our purpose, we adopt numerical model

outcomes[13] distilled pointwise from their behaviour presented in Ref. [14].

Quark propagator functionsM(k) (left) and Z(k) (right) vs. k ≡
√
k2 [14]:
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Mimicking the p0 integration in the definition of φ(p) by integrating over k4
gives us ϕ2(p) and its Fourier counterpart ϕ2(r), the sought inversion input.

Salpeter component in momentum (left) and configuration (right) space[8]:
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Division of the effective kinetic term T (r) by ϕ2(p) takes us to the potential

V (r) aimed for. This potential’s unexpected square-well shape resemblance

we consider as this exercise’s true quintessence: we find V (0) = −1.92 GeV

(finite), V (15.70 GeV−1) = 0 (single zero), V (r) −−−−→
r→+∞

∞ (confinement).

Potential V (r)[8] derived by inverting our 3D bound-state equation[3] with

Fierz-invariant interaction kernel, for a “lightest-quark” propagator [13,14]:
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A brief inspection with the naked eye reveals that the ground-state solution

of our 3D equation with V (r) as inferred by inversion yields, inevitably, a

reasonable size of the pion: its average interquark distance, 〈r〉 = 0.483 fm,

and root-mean-square radius,
√

〈r2〉 = 0.535 fm, predicted by our starting

point ϕ2(r) of the inversion do match the experimentally measured value of

the electromagnetic charge radius,
√

〈r2π〉 = (0.672±0.008) fm, of the pion.

Consistency of such inversion can be established by numerically solving, for

the effective interaction potential, the bound-state equation variationally or

by expansion over a suitable basis. Our approach passes with flying colours.

In both cases, the overlap of wave-function input and outcome equals unity.
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Ground-state solution (dotted) to our 3D bound-state equation, inferred by

application of variational techniques (left) or by conversion to an equivalent

matrix eigenvalue problem (right), vs. initial Salpeter component (dashed):
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