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QCD at large Nc

S U(Nc) gauge theory with Nc → ∞ and αs ∼ 1/Nc. At leading order, QCD Green functions have
only non-interacting mesons as intermediate states; tetraquark bound states may emerge only
in Nc-subleading diagrams. This fact was believed to provide the theoretical explanation of the
non-existence of exotic tetraquarks.

However, even if the exotic tetraquark bound states appear only in subleading diagrams, the
crucial question is their width: if narrow, they might be well observed in nature.
We discuss four-point Green functions of bilinear quark currents, depend on 6 variables p2

1, p2
2,

p′21 , p′22 , p = p1 + p2 = p′1 + p′2, and the two Mandelstam variables s = p2 and t = (p1 − p′1)2.

Criteria for selecting diagrams which potentially contribute to the tetraquark pole at s = M2
T :

1. The diagram should have a nontrivial (i.e., non-polynomial) dependence on the variable s.

2. The diagram should have a four-particle cut (i.e. threshold at s = (m1+m2+m3+m4)2), where
mi are the masses of the quarks forming the tetraquark bound state. The presence or absence
of this cut is established by solving the Landau equations for the corresponding diagram.
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Flavour-exotic tetraquarks

Bilinear quark currents ji j = q̄iq j producing Mi j from the vacuum, ⟨0| ji j|Mi j⟩ = fMi j, fM ∼
√

Nc.

“Direct” 4-point functions Γ(dir)
I = ⟨ j†12 j†34 j12 j34⟩ and Γ(dir)

II = ⟨ j†14 j†32 j14 j32⟩:
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“Recombination” functions Γ(rec) = ⟨ j†12 j†34 j14 j32⟩ and Γ(rec)†:
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Γ
(dir)
I,T = ⟨ j

†
12 j†34 j12 j34⟩ = O(N0

c ), Γ(dir)
II,T = ⟨ j

†
14 j†32 j14 j32⟩ = O(N0

c ), Γ(rec)
T = ⟨ j†12 j†34 j14 j32⟩ = O(N−1

c ).

The fact that “dir” and “rec” amplitudes have different behaviors in Nc requires at least two exotic
poles:
TA couples stronger to M12M34 channel, TB couples stronger to M14M32 channel.

Γ
(dir)
I,T = O(N0

c ) = f 4
M

 |A(M12M34 → TA)|2
p2 − M2

TA

+
|A(M12M34 → TB)|2

p2 − M2
TB

 + · · · ,
Γ

(dir)
II,T = O(N0

c ) = f 4
M

 |A(M14M32 → TA)|2
p2 − M2

TA

+
|A(M14M32 → TB)|2

p2 − M2
TB

 + · · · ,
Γ

(rec)
T = O(N−1

c ) = f 4
M

A(M12M34 → TA)A(TA → M14M32)
p2 − M2

TA

+
A(M12M34 → TB)A(TB → M14M32)

p2 − M2
TB

 + · · · .
We seek tetraquarks with finite mass at large Nc:

A(TA → M12M34) = O(N−1
c ), A(TA → M14M32) = O(N−2

c ),
A(TB → M12M34) = O(N−2

c ), A(TB → M14M32) = O(N−1
c ).

The widths Γ(TA,B) = O(N−2
c ).
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Cryptoexotic tetraquarks

Diagrams of new topologies emerge.

For direct functions Γ(dir)
(I,II),T , new diagrams do not change leading large-Nc behavior:
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The new diagram modifies the leading large-Nc behavior:

Γ
(dir)
I,T = ⟨ j

†
12 j†23 j12 j23⟩ = O(N0

c ), Γ(dir)
II,T = ⟨ j

†
13 j†22 j13 j22⟩ = O(N0

c ), Γ(rec)
T = ⟨ j†12 j†23 j13 j22⟩ = O(N0

c ).

“dir” and “rec” functions have the same behavior, and one exotic state T is enough:

A(T → M12M23) = O(N−1
c ), A(T → M13M22) = O(N−1

c ).

Its width is Γ(T ) = O(N−2
c ).

T can mix with the ordinary meson M13. The restriction on the mixing parameter gT M13:

Γ
(dir)
I,T = O(N0

c ) = f 4
M

A(M12M23 → T )
p2 − M2

T

gT M13

A(M13 → M12M23)
p2 − M2

M13

 + · · · .
A(M13 → M12M23) ∼ 1/

√
Nc, so gT M13 ≤ O(1/

√
Nc).

The analysis of Green functions in large-Nc QCD allows one
to restrict some properties of the possible exotic states.
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Strong decays from 3- point vertex functions

• The basic object:

Γ(p, p′, q) =
∫
⟨Ω|T (J(x) j(0) j′(x′)|Ω⟩ exp(ipx − ip′ x′)dxdx′

´

q

p p

This correlator contains the triple-pole in the Minkowski region: namely

Γ(p, p′, q) =
f f ′

(p2 − M2)(p′2 − M′2)
F(q2) + · · ·

where the form factor F(q2) contains pole at q2 = M2
q:

F(q2) =
fqgMM′Mq

(q2 − M2
q)
+ · · ·

gMM′Mq describes the M → M1M2 strong transition;
f , f ′, and fMq are the decay constants of the mesons ⟨0| j(0)|M⟩ = fM.
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• Normal hadrons:

ΓOPE(p2, p′2, q2) = Γ0(p2, p′2, q2) + αsΓ1(p2, p′2, q2) + . . .

p p
′

q

+ . .

.

+ . .

.

+. . .

Already one-loop lowest-order diagram has a nonzero double-spectral density, and therefore pro-
vides a nonzero contribution to the form factor.

• Exotic hadrons: ⟨T (θ(x) j1(0) j2(y))⟩.
Many possibilities to write interpolating current for X, ⟨0|θ|X⟩ = fX, fX , 0.

θ = M(x)M(x), θ = MA(x)MA(x), θ = D̄a(x)Da(x).

Color singlet - color singlet:

´

p

ṕ

p

ṕ

p

q qq

p

ΓOPE(p2, p′2, q2) = Π(p′2)Π(q2) + (αs)2Γconnected(p2, p′2, q2)

Thus the LO contribution is not related to the exotic-state decay.
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Conclusions

• QCD at large Nc:
Large-Nc QCD restricts properties of the exotic poles if such poles exist. E.g., two exotic q̄1q2q̄3q4

narrow states Γ ∼ O(1/N2
c ), each decaying into one meson-meson channel.

One cryptoexotic state q̄1q2q̄2q3 Γ ∼ O(1/N2
c ) decaying into various meson-meson channels with

similar probabilities.

• Dynamics of exotic-state decays and implications for QCD sum rules:
Dynamics of fall-apart decays of exotic resonances has fundamental difference from dynamics
of ordinary-meson decays: the appropriate contributions to Green functions describing decays
of exotic states emerge only at subleading αs orders; the leading order disconnected diagrams
are not related to strong decays of exotic hadrons. This makes the calculation of αs-corrections
mandatory.

Many efforts for obtaining reliable predictions are necessary!


