

POLARIZATION EFFECTS IN THE REACTIONS $p+{ }^{3} \mathrm{He} \rightarrow \pi^{+}+{ }^{4} \mathrm{He}, \quad \pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ AND QUANTUM CHARACTER OF SPIN CORRELATIONS IN THE FINAL $\left(p,{ }^{3} H e\right)$ SYSTEM

$\underline{\text { Valery V. Lyuboshitz }}{ }^{*}$ and V.L. Lyuboshitz

Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia
*) E-mail: Valery.Lyuboshitz@jinr.ru

Abstract

The general consequences of T invariance for the direct and inverse binary reactions $a+b \rightarrow c+d, c+d \rightarrow a+b$ with spin- $1 / 2$ particles a, b and unpolarized particles c, d are considered. Using the formalism of helicity amplitudes, the polarization effects are studied in the reaction $p+{ }^{3} \mathrm{He} \rightarrow$ $\pi^{+}+{ }^{4} \mathrm{He}$ and in the inverse process $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$. It is shown that in the reaction $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ the spins of the final proton and ${ }^{3} \mathrm{He}$ nucleus are strongly correlated. A structural expression through helicity amplitudes, corresponding to arbitrary emission angles, is obtained for the correlation tensor. It is established that in the reaction $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ one of the "classical" incoherence inequalities of the Bell type for diagonal components of the correlation tensor is necessarily violated.

1 Consequences of T invariance for binary reactions

Let us consider the reaction $a+b \rightarrow c+d$, where a and b are the spin- $1 / 2$ particles and the particles c, d have arbitrary spins. The structure of the effective cross-section $\sigma_{a+b \rightarrow c+d}$ in the c.m. frame of the particles a and b, summed over spin projections of the final particles c, d, is as follows [1]:

$$
\begin{equation*}
\sigma_{a+b \rightarrow c+d}\left(\mathbf{k}_{a}, \mathbf{P}^{(a)}, \mathbf{P}^{(b)} ; \mathbf{k}_{c}\right)=\sigma_{0}(E, \theta) L\left(\mathbf{k}_{a}, \mathbf{P}^{(a)}, \mathbf{P}^{(b)} ; \mathbf{k}_{c}\right), \tag{1}
\end{equation*}
$$

where $\sigma_{0}(E, \theta)$ is the respective cross-section for unpolarized particles a, b and L is the linear function of the polarization vectors $\mathbf{P}^{(a)}$ and $\mathbf{P}^{(b)}$:

$$
\begin{align*}
L\left(\mathbf{k}_{a}, \mathbf{P}^{(a)},\right. & \left.\mathbf{P}^{(b)} ; \mathbf{k}_{c}\right)=1+A(E, \theta)\left(\mathbf{P}^{(a)} \mathbf{n}\right)+B(E, \theta)\left(\mathbf{P}^{(b)} \mathbf{n}\right)+C(E, \theta)\left(\mathbf{P}^{(a)} \mathbf{P}^{(b)}\right)+ \\
& +D(E, \theta)\left(\mathbf{P}^{(a)} \mathbf{l}\right)\left(\mathbf{P}^{(b)} \mathbf{l}\right)+F(E, \theta)\left(\mathbf{P}^{(a)} \mathbf{m}\right)\left(\mathbf{P}^{(b)} \mathbf{m}\right)+ \\
& +G(E, \theta)\left(\mathbf{P}^{(a)} \mathbf{l}\right)\left(\mathbf{P}^{(b)} \mathbf{m}\right)+H(E, \theta)\left(\mathbf{P}^{(a)} \mathbf{m}\right)\left(\mathbf{P}^{(b)} \mathbf{l}\right) . \tag{2}
\end{align*}
$$

Here $\mathbf{l}, \mathbf{m}, \mathbf{n}$ are mutually orthogonal unit vectors, defined as:

$$
\begin{equation*}
\mathbf{l}=\mathbf{k}_{a} / k_{a} ; \quad \mathbf{m}=\frac{\mathbf{l}^{\prime}-\mathbf{l}\left(\mathbf{l}^{\prime} \mathbf{l}\right)}{\sin \theta} ; \quad \mathbf{n}=\frac{\mathbf{l} \times \mathbf{l}^{\prime}}{\sin \theta} \tag{3}
\end{equation*}
$$

$\left(\mathbf{l}^{\prime}=\mathbf{k}_{c} / k_{c}\right) ; \mathbf{k}_{a}, \mathbf{k}_{c}$ are the respective momenta of the particles a, c, E is the total energy in the c.m. frame and $\theta=\arccos \left(\mathbf{l} \mathbf{l}^{\prime}\right)$ is the emission angle.

Meantime, for the inverse reaction $c+d \rightarrow a+b$ with the unpolarized particles c, d and the fixed polarization vectors of the final particles $\zeta^{(a)}$, $\zeta^{(b)}$ the effective cross-section takes, due to T invariance and the principle of detailed balance, the following form [1]:

$$
\begin{equation*}
\sigma_{c+d \rightarrow a+b}\left(\mathbf{k}_{c} ; \mathbf{k}^{(a)}, \boldsymbol{\zeta}^{(a)}, \boldsymbol{\zeta}^{(b)}\right)=\frac{1}{4} \widetilde{\sigma}_{0}(E, \theta) L\left(-\mathbf{k}_{a},-\boldsymbol{\zeta}^{(a)},-\boldsymbol{\zeta}^{(b)} ;-\mathbf{k}_{c}\right), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{\sigma}_{0}(E, \theta)=\frac{4 k_{a}^{2}}{k_{c}^{2}\left(2 j_{c}+1\right)\left(2 j_{d}+1\right)} \sigma_{0}(E, \theta) \tag{5}
\end{equation*}
$$

is the cross-section of the inverse reaction, summed over the spin projections of the final particles a, b. Further, the two-particle spin density matrix $\hat{\rho}^{(a, b)}$ for the final particles a, b can also be expressed through the same function L, replacing the polarization vectors by the vector Pauli operators:

$$
\begin{align*}
\hat{\rho}^{(a, b)} & =\frac{1}{4}\left[\hat{I}^{(a)} \otimes \hat{I}^{(b)}+\left(\mathbf{P}^{(a)}(E, \theta) \hat{\boldsymbol{\sigma}}^{(a)}\right) \otimes \hat{I}^{(b)}++\hat{I}^{(a)} \otimes\left(\mathbf{P}^{(b)}(E, \theta) \hat{\boldsymbol{\sigma}}^{(b)}\right)+\right. \\
& \left.+\sum_{i=1}^{3} \sum_{k=1}^{3} T_{i k}(E, \theta) \hat{\sigma}_{i}^{(a)} \otimes \hat{\sigma}_{k}^{(b)}\right]=\frac{1}{4} \hat{L}\left(-\mathbf{k}_{a},-\hat{\boldsymbol{\sigma}}^{(a)},-\hat{\boldsymbol{\sigma}}^{(b)} ;-\mathbf{k}_{c}\right) . \tag{6}
\end{align*}
$$

In (6) $\hat{I}^{a}, \hat{I}^{(b)}$ are two-row unit matrices, $\mathbf{P}^{(a)}(E, \theta)=-A(E, \theta) \mathbf{n}$ and $\mathbf{P}^{(b)}(E, \theta)=-B(E, \theta) \mathbf{n}$ are the polarization vectors of the particles a, b,

$$
\begin{gather*}
T_{i k}(E, \theta)=C(E, \theta) \delta_{i k}+D(E, \theta) l_{i} l_{k}+ \\
+F(E, \theta) m_{i} m_{k}+G(E, \theta) l_{i} m_{k}+H(E, \theta) m_{i} l_{k} \tag{7}
\end{gather*}
$$

are components of the correlation tensor describing spin correlations in the final two-particle system (a, b). In doing so, all the functions A, B, C, D, F, G, H, σ_{0} and the unit vectors $\mathbf{l}, \mathbf{m}, \mathbf{n}$ in Eqs. (4)-(7) are the same as for the direct reaction $a+b \rightarrow c+d$.

Thus, due to T invariance, the dependence of the effective cross- section of the direct reaction $a+b \rightarrow c+d$ upon the polarizations of initial particles completely determines the polarization vectors and spin correlations for the same particles a, b produced in the inverse reaction $c+d \rightarrow a+b$ with unpolarized primary particles ${ }^{1}$.

2 Polarization effects in the reaction $p+{ }^{3} \mathrm{He} \rightarrow$ $\pi^{+}+{ }^{4} H e$

This reaction belongs to the type $1 / 2+1 / 2 \rightarrow 0+0$ (the proton and ${ }^{3} H e$ nucleus have spin $1 / 2, \pi^{+}$and ${ }^{4} H e$ have zero spin). Thus, on account of the negative internal parity of the π^{+}-meson, this reaction can proceed only from triplet states of the system $\left(p,{ }^{3} H e\right)[3,4,5]$ (as follows from the parity and angular momentum conservation).

Let us choose the axis of the total-spin quantization z along the vector $\mathbf{l}=\mathbf{k}_{p} / k_{p}$. There exist three possible triplet states of the $\left(p,{ }^{3} H e\right)$-system, characterized by the spin projections $+1,-1$ and 0 onto the axis z :

$$
\begin{align*}
& |+1, \mathbf{l}\rangle=|+1 / 2, \mathbf{l}\rangle^{(p)} \otimes|+1 / 2, \mathbf{l}\rangle^{(H e)}, \quad|-1, \mathbf{l}\rangle=|-1 / 2, \mathbf{l}\rangle^{(p)} \otimes|-1 / 2, \mathbf{l}\rangle^{(H e)} \\
& |0, \mathbf{l}\rangle=\frac{1}{\sqrt{2}}\left(|+1 / 2, \mathbf{l}\rangle^{(p)} \otimes|-1 / 2, \mathbf{l}\rangle^{(H e)}+|-1 / 2, \mathbf{l}\rangle^{(p)} \otimes|+1 / 2, \mathbf{l}\rangle^{(H e)}\right) \tag{8}
\end{align*}
$$

The two-particle spin density matrix for the $\left(p,{ }^{3} H e\right)$-system is:

$$
\begin{equation*}
\hat{\rho}^{(p, H \epsilon)}=\frac{1}{4}\left(\hat{I}^{(p)}+\mathbf{P}^{(p)} \boldsymbol{\sigma}(p)\right) \otimes\left(\hat{I}^{(H e)}+\mathbf{P}^{(H \epsilon)} \boldsymbol{\sigma}^{(H \epsilon)}\right) \tag{9}
\end{equation*}
$$

$\left(\mathbf{P}^{(p)}\right.$ and $\mathbf{P}^{(H e)}$ are the independent polarization vectors). Using the technique of helicity amplitudes (the helicity amplitude $R_{\lambda}(E, \theta), \lambda= \pm 1,0$, is the amplitude of the reaction $p+{ }^{3} \mathrm{He} \rightarrow \pi^{+}+{ }^{4} \mathrm{He}$ proceeding from the state $|\lambda, \mathbf{l}\rangle(8))$, we may write [1]:

[^0]\[

$$
\begin{gather*}
\sigma_{p+{ }^{3} H e \rightarrow \pi^{+}+{ }^{4} H e}=\langle\psi| \hat{\rho}^{(p, H e)}|\psi\rangle= \\
=\sum_{\lambda} \sum_{\lambda^{\prime}} R_{\lambda}(E, \theta)\langle\lambda, \mathbf{l}| \hat{\rho}^{(p, H e)}\left|\lambda^{\prime}, \mathbf{l}\right\rangle R_{\lambda^{\prime}}^{*}(E, \theta) ; \tag{10}\\
|\psi\rangle=\sum_{\lambda= \pm 1,0} R_{\lambda}^{*}(E, \theta)|\lambda, \mathbf{l}\rangle= \\
=R_{1}^{*}(E, \theta)\left(|+1 / 2, z\rangle^{(p)} \otimes|+1 / 2, z\rangle^{(H e)}-|-1 / 2, z\rangle^{(p)} \otimes|-1 / 2, z\rangle^{(H e)}\right)+ \\
+\frac{1}{\sqrt{2}} R_{0}^{*}(E, \theta)\left(|+1 / 2, z\rangle^{(p)} \otimes|-1 / 2, z\rangle^{(H e)}+|-1 / 2, z\rangle^{(p)} \otimes|+1 / 2, z\rangle^{(H e)}\right) \tag{11}
\end{gather*}
$$
\]

is the non-normalized initial two-particle spin state selected by the reaction (due to parity conservation, $R_{+1}(E, \theta)=-R_{-1}(E, \theta) \equiv R_{1}(E, \theta)$).

Finally, using (11) and the formula (9) for the spin density matrix, we find that the cross-section $\sigma_{p+{ }^{3} H e \rightarrow \pi^{+}+{ }^{4} H e}(10)$ is described by the general structural formula for $\sigma_{a+b \rightarrow c+d}(1,2)$, where the functions σ_{0}, A, B, C, D, F, G, H are bilinear combinations of the helicity amplitudes R_{1}, R_{0} [1]:

$$
\begin{gather*}
\sigma_{0}(E, \theta)=\frac{1}{4}\langle\psi \mid \psi\rangle=\frac{1}{4}\left(\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}\right) \tag{12}\\
A(E, \theta)=B(E, \theta)=\frac{1}{\sqrt{2} \sigma_{0}(E, \theta)} \operatorname{Im}\left(R_{1}(E, \theta) R_{0}^{*}(E, \theta)\right) \tag{13}\\
C(E, \theta)=1, \quad D(E, \theta)=-\frac{\left|R_{0}(E, \theta)\right|^{2}}{2 \sigma_{0}(E, \theta)}, \quad F(E, \theta)=-\frac{\left|R_{1}(E, \theta)\right|^{2}}{2 \sigma_{0}(E, \theta)} \tag{14}\\
G(E, \theta)=H(E, \theta)=\frac{1}{\sqrt{2} \sigma_{0}(E, \theta)} \operatorname{Re}\left(R_{1}(E, \theta) R_{0}^{*}(E, \theta)\right) \tag{15}
\end{gather*}
$$

For the particular cases $\theta=0$ and $\theta=\pi$, when $R_{1}(E, \theta)=0$ (owing to the conservation of the angular-momentum projection onto the reaction axis), the expression for $\sigma_{p+{ }^{3} H \epsilon \rightarrow \pi^{+}+{ }^{4} H e}$ takes a considerably simpler form:

$$
\begin{equation*}
\sigma_{p+{ }^{3} H \epsilon \rightarrow \pi^{+}+{ }^{4} H e}=\frac{1}{4}\left|R_{0}\right|^{2}\left(1+\mathbf{P}^{(p)} \mathbf{P}^{(H e)}-2\left(\mathbf{P}^{(p)} \mathbf{l}\right)\left(\mathbf{P}^{(H \epsilon)} \mathbf{l}\right)\right), \tag{16}
\end{equation*}
$$

the coefficient at $\left|R_{0}\right|^{2}$ is the fraction of the state $|0, \mathbf{l}\rangle$ in the initial states.

3 Spin effects in the inverse reaction $\pi^{+}+{ }^{4} H e \rightarrow$ $p+{ }^{3} H e$

In the reaction $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ the $\left(p,{ }^{3} \mathrm{He}\right)$-system is produced in the triplet state only. This state, normalized to unity, is as follows [1]:

$$
\begin{gather*}
|\widetilde{\psi}\rangle=\frac{1}{\left(\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}\right)^{1 / 2}} \times \\
\times\left[R_{1}(E, \theta)\left(|+1 / 2, \mathbf{l}\rangle^{(p)} \otimes|+1 / 2, \mathbf{l}\rangle^{(H e)}-|-1 / 2, \mathbf{l}\rangle^{(p)} \otimes|-1 / 2, \mathbf{l}\rangle^{(H e)}\right)+\right. \\
\left.+\frac{1}{\sqrt{2}} R_{0}(E, \theta)\left(|+1 / 2, \mathbf{l}\rangle^{(p)} \otimes|-1 / 2, \mathbf{l}\rangle^{(H e)}+|-1 / 2, \mathbf{l}\rangle^{(p)} \otimes|+1 / 2, \mathbf{l}\rangle^{(H e)}\right)\right], \tag{17}
\end{gather*}
$$

and it is symmetric under the interchange of spin quantum numbers of the proton and ${ }^{3} \mathrm{He}$. The state $|\widetilde{\psi}\rangle(17)$ is similar in structure to the initial triplet state $|\psi\rangle$ selected by the direct reaction $p+{ }^{3} \mathrm{He} \rightarrow \pi^{+}+{ }^{4} \mathrm{He}$ (see Section 2), but differs by complex conjugation of helicity amplitudes.

Basing on the T invariance (see Section 1), we obtain [1]:

1) For the effective cross-section of the reaction $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ in the c.m. frame, summed over the spin projections in the final state:

$$
\begin{equation*}
\widetilde{\sigma}_{0}(E, \theta)=\left(k_{p} / k_{\pi}\right)^{2}\left(\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}\right) ; \tag{18}
\end{equation*}
$$

2) For the polarization vectors of the proton and ${ }^{3} H e$ in the final system:

$$
\begin{align*}
& \mathbf{P}^{(p)}(E, \theta)=\langle\widetilde{\psi}| \hat{\boldsymbol{\sigma}}^{(p)}|\widetilde{\psi}\rangle=\mathbf{P}^{(H e)}(E, \theta)=\langle\widetilde{\psi}| \hat{\boldsymbol{\sigma}}^{(H e)}|\widetilde{\psi}\rangle= \\
& \quad=-A(E, \theta) \mathbf{n}=-2 \sqrt{2} \frac{\operatorname{Im}\left(R_{1}(E, \theta) R_{0}^{*}(E, \theta)\right)}{\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}} \mathbf{n} ; \tag{19}
\end{align*}
$$

3) For the correlation tensor of the $\left(p,{ }^{3} \mathrm{He}\right)$-system:

$$
\begin{align*}
T_{i k}(E, \theta)= & \langle\widetilde{\psi}| \hat{\sigma}_{i}^{(p)} \hat{\sigma}_{k}^{(H e)}|\widetilde{\psi}\rangle=\delta_{i k}-\frac{2}{\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}} \times \\
& \times\left[\left|R_{0}(E, \theta)\right|^{2} l_{i} l_{k}+2\left|R_{1}(E, \theta)\right|^{2} m_{i} m_{k}-\right. \\
& \left.-\sqrt{2} \operatorname{Re}\left(R_{1}(E, \theta) R_{0}^{*}(E, \theta)\right)\left(l_{i} m_{k}+m_{i} l_{k}\right)\right] . \tag{20}
\end{align*}
$$

In all the expressions (17)-(20) the helicity amplitudes $R_{0}(E, \theta), R_{1}(E, \theta)$ and the unit vectors $\mathbf{l}, \mathbf{m}, \mathbf{n}$ are the same as for the previously considered direct process $p+{ }^{3} \mathrm{He} \rightarrow \pi^{+}+{ }^{4} \mathrm{He}$.

In accordance with $(19,20): 1)$ the polarization of the ${ }^{3} \mathrm{He}$ nucleus along the normal to the reaction plane is identical to that of the proton; 2) the correlation tensor $T_{i k}(E, \theta)$, describing the spin correlations in the $\left(p,{ }^{3} H e\right)$ system, is symmetric. Thus, the spins of the proton and the ${ }^{3} \mathrm{He}$ nucleus in the reaction $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ must be tightly correlated, which enables one, in principle, to prepare a beam of ${ }^{3} \mathrm{He}$ nuclei with controllable polarization without acting directly on these nuclei (see [1] for more details).

4 Violation of the incoherence inequalities for the correlation tensor

As it was established in the paper [6], in the case of incoherent mixtures of factorizable two-particle states of spin-1/2 fermions the following inequalities for the diagonal components of the correlation tensor should be satisfied:

$$
\begin{equation*}
\left|T_{11}+T_{22}+T_{33}\right| \leq 1 ; \quad\left|T_{11}+T_{22}\right| \leq 1 ; \quad\left|T_{11}+T_{33}\right| \leq 1 ; \quad\left|T_{22}+T_{33}\right| \leq 1 \tag{21}
\end{equation*}
$$

However, for non-factorizable quantum-mechanical superpositions these inequalities may be violated. The triplet state $|\widetilde{\psi}\rangle(17)$ of the final system in the reaction $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ represents a characteristic example of such non-factorizable spin states (it is well seen that the state $|\widetilde{\psi}\rangle$ cannot be reduced to the product of one-particle spin states).

Let us calculate the components of the correlation tensor $T_{i k}(20)$ for the system $\left(p,{ }^{3} \mathrm{He}\right)$ in the coordinate frame with $z\|\mathbf{l}, x\| \mathbf{m}, y \| \mathbf{n}$. Finally, we obtain the following expressions (indexes: $1 \rightarrow x, 2 \rightarrow y, 3 \rightarrow z$):

$$
\begin{gather*}
T_{11}=\frac{\left|R_{0}(E, \theta)\right|^{2}-2\left|R_{1}(E, \theta)\right|^{2}}{\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}} ; \quad T_{22}=1 ; \\
T_{33}=\frac{2\left|R_{1}(E, \theta)\right|^{2}-\left|R_{0}(E, \theta)\right|^{2}}{\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}}=-T_{11} ; \tag{22}\\
T_{13}=T_{31}=\frac{2 \sqrt{2}}{\left|R_{0}(E, \theta)\right|^{2}+2\left|R_{1}(E, \theta)\right|^{2}} \operatorname{Re}\left(R_{1} R_{0}^{*}\right) ; \\
T_{12}=T_{21}=T_{23}=T_{32}=0 \tag{23}
\end{gather*}
$$

in doing so, $\operatorname{tr}(T)=1$.

Thus, as follows from Eq. (22), in the reaction $\pi^{+}+{ }^{4} \mathrm{He} \rightarrow p+{ }^{3} \mathrm{He}$ one of the incoherence inequalities (21) for the diagonal components of the correlation tensor is necessarily violated, irrespective of the concrete mechanism of generation of the system $\left(p,{ }^{3} \mathrm{He}\right)$. Indeed, if $\left|R_{0}\right|^{2}>2\left|R_{1}\right|^{2}$, we obtain that $\left|T_{11}+T_{22}\right|>1$; if, on the contrary, $\left|R_{0}\right|^{2}<2\left|R_{1}\right|^{2}$, then we have: $\left|T_{22}+T_{33}\right|>1$. Meantime, in both the cases the other three incoherence inequalities (21) are satisfied.

References

[1] V.V. Lyuboshitz and V.L. Lyuboshitz, Phys. At. Nucl. 63, 767 (2000).
[2] V.V. Lyuboshitz and V.L. Lyuboshitz, Phys. At. Nucl. 62, 1323 (1999).
[3] S.M. Bilenky and R.M. Ryndin, Phys. Lett. 6, 217 (1963).
[4] V.L. Lyuboshitz, Proceedings of the International Symposium Dubna-Deuteron-93, JINR E2-94-95, Dubna, 1994, p.292.
[5] V.L. Lyuboshitz, Sov. J. Nucl. Phys. 12, 107 (1970).
[6] R. Lednicky and V.L. Lyuboshitz, Phys. Lett. B508, 146 (2001).

[^0]: ${ }^{1}$ Previously a similar approach was used in [2] to study polarization effects in the scattering of spin- $1 / 2$ particles on an unpolarized target, basing on the T invariance of the differential cross-section of elastic scattering.

