

Contribution ID: 640

Type: Poster Presentation

Polarization effects in the reactions $p+{}^3He \rightarrow \pi^+ + {}^4He, \pi^+ + {}^4He \rightarrow p+{}^3He$ and quantum character of spin correlations in the final $(p,\,{}^3He)$ system

The general consequences of ${\cal T}$ invariance for the direct

and inverse binary reactions $a+b \rightarrow c+d$,

 $c+d \rightarrow a+b$ with spin-1/2 particles $a,\,b$

and unpolarized particles c, d are analyzed.

Using the formalism of helicity amplitudes, the theoretical study of polarization

effects in the reaction $p + {}^3He \rightarrow \pi^+ + {}^4He$ and in the inverse process

 $\pi^+ + {}^4He \rightarrow p + {}^3He$ is performed. It is shown

that in the reaction $\pi^+ + {}^4He \to p + {}^3He$ the spins of the final proton and 3He nucleus are strongly correlated. A structural

expression through helicity amplitudes, corresponding to arbitrary emission angles, is obtained for the correlation tensor. It is established that in the reaction $\pi^+ + {}^4He \rightarrow p + {}^3He$ one of the "classical" incoherence inequalities of the Bell type for

diagonal components of the correlation tensor is necessarily violated and, thus, the spin correlations in the final system $(p, {}^{3}He)$ have the strongly pronounced quantum character.

Experimental Collaboration

Primary authors: Dr LYUBOSHITZ, Valery (Joint Institute for Nuclear Research, Dubna); Dr LYUBOSHITZ, Vladimir (Joint Institute for Nuclear Research, Dubna)

Presenter: Dr LYUBOSHITZ, Valery (Joint Institute for Nuclear Research, Dubna)

Session Classification: Poster session

Track Classification: QCD and Hadronic Physics