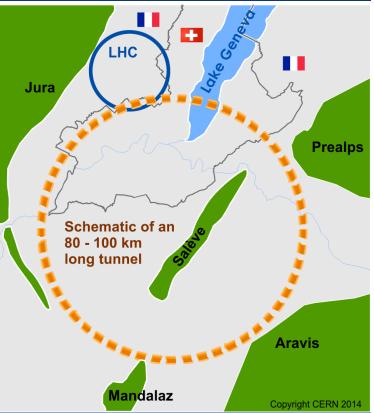


Machine Detector Interface for the e⁺e⁻ Future Circular Collider

M. Boscolo (LNF-INFN)

for the FCC-ee MDI Group

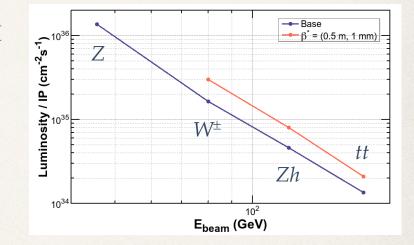

Outline

- FCC-ee
- IR Optics
- IR layout
- Vacuum chamber design for trapped modes analysis
- Solenoid Compensation scheme
- Luminosity monitor
- Background studies
 - Synchrotron radiation -> main issue especially at top energy, beam-gas, ...
 - IP backgrounds: Beamstrahlung, radiative Bhabha, pairs, γγ-> hadrons
- Conclusion and future steps

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

International FCC collaboration (CERN as host lab) to study:

- pp-collider (FCC-hh)
 → main emphasis, defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV *pp* in 100 km
- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step / as a possible first step
- p-e (FCC-he) option, HE-LHC ...

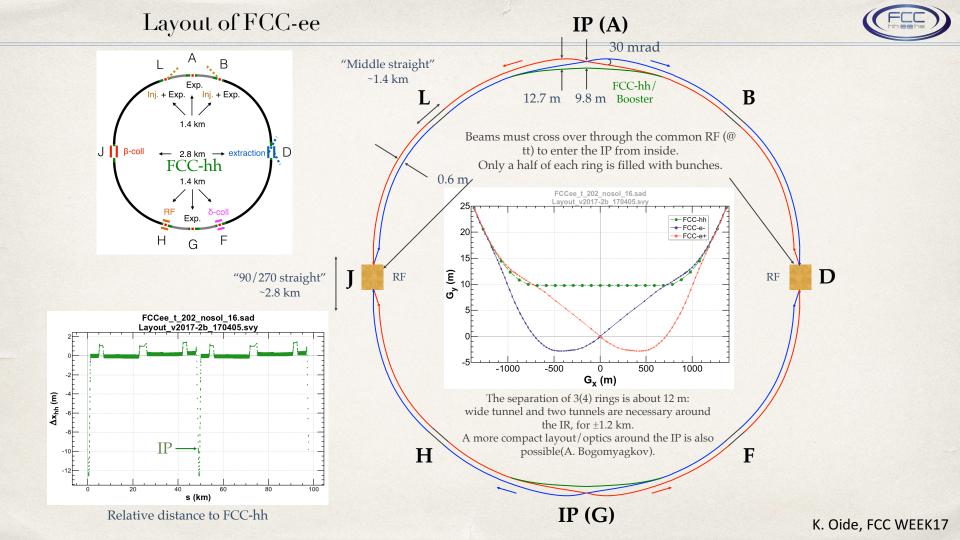


Parameters 2017 (Preliminary)

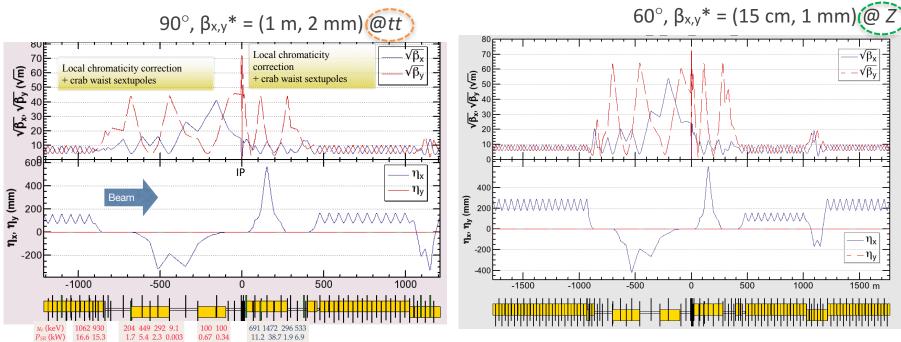
Design			201	17				
Circumference	[km]	97.750						
Arc quadrupole scheme	[]	twin aperture						
Bend. rad. of arc dipoles	[km]	10.747						
Number of IPs / ring		2						
Crossing angle at IP	[mrad]	30						
Solenoid field at IP	[T]	± 2						
ℓ^*	[m]	2.2						
Local chrom. correction		y-plane with crab-sext. effect						
RF frequency	[MHz]		400					
Total SR power	[MW]		100					
Beam energy	[GeV]	45.6	80	120	175			
SR energy loss/turn	[GeV]	0.036	0.34	1.72	7.80			
Long. damping time	[ms]	414	76.8	22.9	7.49			
Current/beam	[mA]	1390	147	29.0	6.4			
Bunches/ring		70760	7280 (4540)	826 (614)	64(50)			
Particles/bunch	$[10^{10}]$	4.0	4.1(6.6)	7.1(9.6)	20.4(26.0)			
Arc cell		$60^{\circ}/60^{\circ}$		90°/90°				
Mom. compaction α_p	$[10^{-6}]$	14.79	7.31					
β -tron tunes ν_x / ν_y		269.14 /267.22		389.08 / 389.18	3			
Arc sext. families		208	292					
$\mathbf{\zeta}$ Horizontal emittance ε_x	[nm]	0.267	0.28	0.63	1.34			
$\varepsilon_y/\varepsilon_x$ at collision	[%]	0.38	0.36	0.2	0.2			
$\beta_x^* \mid \beta_y^*$	[m / mm]	0.15 / 1	1 / 2 (0.5 / 1)					
Energy spread by SR	[%]	0.038	0.066	0.099	0.147			
Energy spread SR+BS	[%]	0.073	0.072(0.091)	0.106(0.122)	0.193(0.212)			
Hor. beam-beam ξ_x		0.008	0.080(0.046)	$0.081 \ (0.053)$	0.082(0.049)			
Ver. beam-beam ξ_y		0.106	0.141(0.141)	0.140(0.140)	0.140(0.138)			
RF Voltage	[MV]	255	696	2620	9500			
Bunch length by SR	[mm]	2.1	2.1	2.0	2.4			
Bunch length SR+BS	[mm]	4.1	2.3(2.9)	2.2(2.5)	2.9(3.5)			
Synchrotron tune ν_z		-0.0413	-0.0340	-0.0499	-0.0684			
RF bucket height	[%]	3.8	3.7	2.2	10.3			
Luminosity/IP	$[10^{34}/{\rm cm^2 s}]$	137	16.4 (30.0)	4.6(8.0)	1.35(2.09)			

(FEC)

★ parameters mostly MDI/IR related

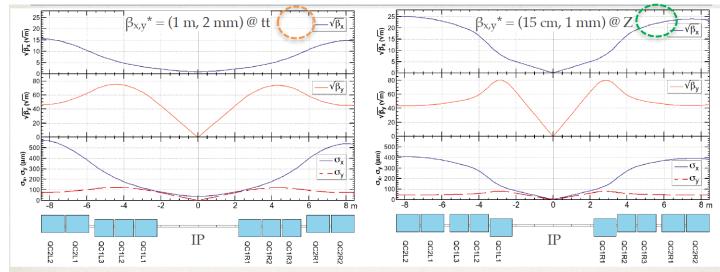


The numbers in () correspond to "high-lumi" option.
The luminosities are geometrical ones, no dynamics involved.


K. Oide, FCC WEEK17

Challenge of the FCC-ee IR

- The FCC-ee collider is a challenging machine, with unprecedented high e⁺e⁻ c.m. energy, luminosity and circumference.
- We have a flexible IR layout, common for all energies.
- The crab-waist collision scheme has been chosen for the IR design.
- Synchrotron Radiation needs special care especially at the top energy and also due to the large crossing angle (total 30 mrad). This topic is a main driver of the IR layout.
- The large crossing angle with the request of ε_y≈ pm scale requires a dedicated solenoid compensation scheme.
- Luminosity monitor aims at a precision absolute measurement of $\approx 10^{-4}$ (at the Z).
- Luminosity and beam induced background sources into the detector are being considered for the different running energies together with masks, shieldings and collimators. G-4 detector modeling follows IR design.



Asymmetric IR optics

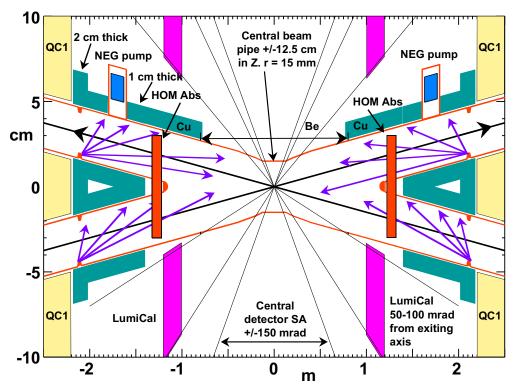
- Synchrotron radiation from the upstream last dipoles is limited to 100 keV (E_{cr}) up to 450 m from the IP
- Local chromaticity correction sections needed for the energy acceptance requirement of 2%

IR Optics

 βx^* reduction from 50 cm to 15 cm at Z

(motivation: to mitigate the coherent beam-beam instability at Z)

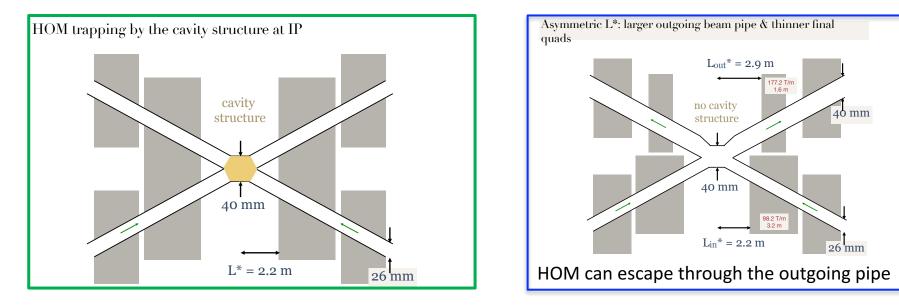
• Divide QC1 into three independent pieces, reverse the polarity at Z.


	L (m)	B' @ tt (T/m)	B′ @ Z (T/m)		L (m)	B' @ tt (T/m)	B' @ Z (T/m
QC1L1	1.2	-94.4	-96.3	QC1R1	1.2	-99.9	-97.2
QC1L2	1	-92.6	+50.3	QC1R2	1	-99.9	+51.2
QC1L3	1	-96.7	+9.8	QC1R3	1	-99.9	+12.0
QC2L1	1.25	+45.8	+6.7	QC2R1	1.25	+78.6	+7.3
QC2L2	1.25	+74.0	+3.2	QC2R2	1.25	+76.2	+7.2

Some details on the Main Features of the FCC-ee MDI design

- Present baseline optics works well for all beam energies, L*=2.2 m fulfills the requirements.
- Symmetric beam pipes in the FF.
- Detector Lumical from 1.0 m to 1.2 m from the IP.
- **Compensating solenoid** in present design starts at 1.25 m.
- Warm beam pipe, water cooled .

central beam pipe = 30 mm beam pipe aperture **@QD0 = 30 mm** beam pipe aperture **masks tip**

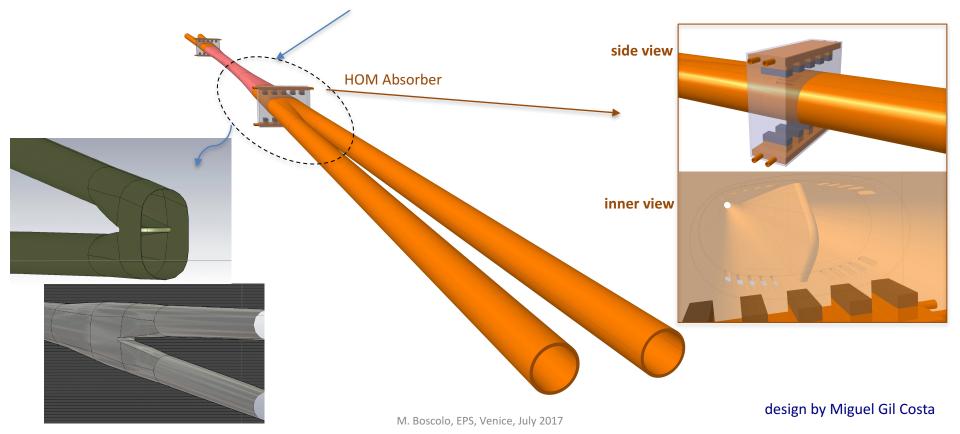

beam pipe aperture@**QF1 = 40 mm** after QF1 = 60 mm

M. Sullivan

Symmetric Final Focus design

• We have **symmetric** final focus design with constant aperture from QD0 through the IP but also **asymmetric** beam pipes in the FF considered

These two possible solutions have been investigated, symmetric case is easier and no showstopper from HOM studies.


IR Beam pipe design for wake field calculations

Two beam pipes are merged into one central pipe in the IR

- Professional CAD design of the complicated IR geometry done, essential for
- **CST/HFSS numerical studies** for generated and/or absorbed e.m. fields, propagating or trapped in the IR
- water cooling of the beam pipe needed to avoid HOM heating in the IR chamber due to absorption of e.m. fields
- **HOM absorber** design in progress in the central chamber, following the PEP-II experience.

complicated geometry: the area where two beam pipes merge to one single pipe

Synchrotron Radiation

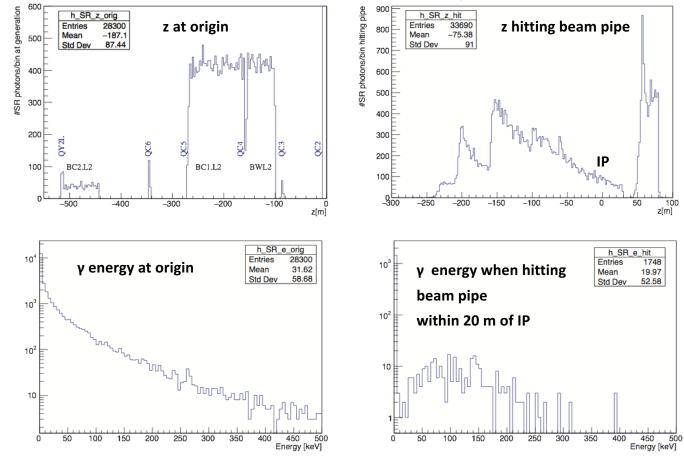

Synchrotron Radiation is the main constraint for IR design and it drives the IR optics and layout

General requirement for the optics based on LEP experience:

- 1. Weak bends $E_{critical} < 100 \text{ keV}$ (LEP2 was 72 keV)
- 2. Weak bends far from IP (LEP2 was 260 m from IP)
- 3. Keep Ecr \leq 1 MeV in whole ring, to minimize n-production (LEP2 0.72 MeV)

Various lattice options have been studied in detail with different approaches*

- MDISim (flexible software toolkit developed by H. Burkhardt et al.)
 - ROOT based machine detector interface toolbox described by MAD-X sequence
 - particle interactions in the IR/detector regions using GEANT4
- SYNC_BKG (modified version by M. Sullivan)
- SYNRAD+ (R. Kersevan)



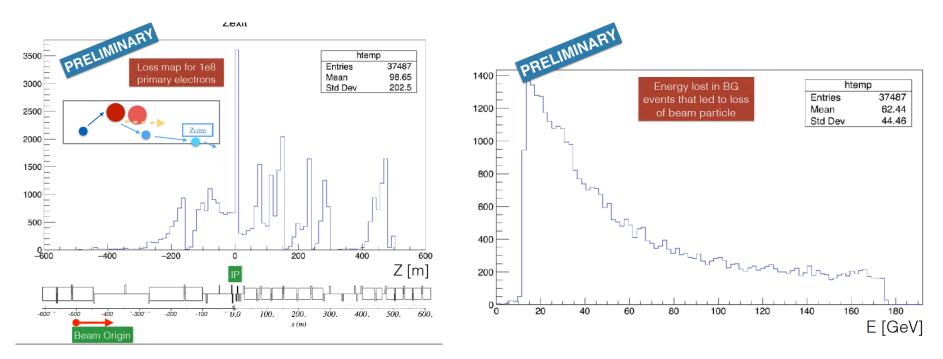
28300 SR y's generated, first 1000 y's shown here

rather fast, < 1 min (MacMini i7)

H. Burkhardt

distributions of these photons

MDISim/Geant4 status and next steps

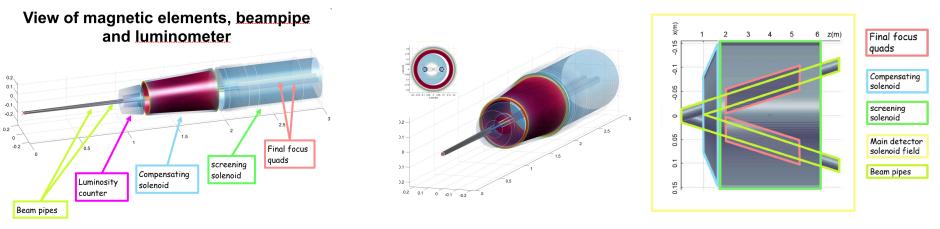

 Automatic generation of geometry + fields - read by GEANT4, followed by tracking in Euclidian coordinates works with sufficient precision (after improving Geant4 tracking)

with SR generation in bends + quads + beam profile generation

- Same principle also works for beam gas
- Insert collimator downstream of last bend to intercept the incoming SR; optimize position
- Combine with detailed IR geometry + detector simulation
- Implement solenoid, still missing on MAD-X level -- could manually add field map on G4 level

Preliminary G4 beam-gas simulation

- inelastic beam-gas +/-500m from IP
- 175 GeV
- vacuum density increased by 10 orders of magnitude (5x10⁻⁹mbar -> 50mbar)


Solenoid Compensation Scheme

Constraints:

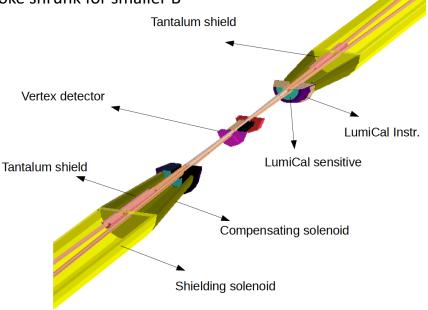
- **2T** detector field
- L*=2.2m
- Space (i.e. only 6.6 cm distance at the tip closest to IP for QD0)
- must be inside the lumical acceptance
- final focus quads inside the detector (low βy^* and large crossing angle)
- leave space for **luminosity detector** at small angle
- field quality at each end and all along the FF quads $\lesssim 10^{-4}$ for all multipoles
- emittance blow-up much smaller than 1 pm

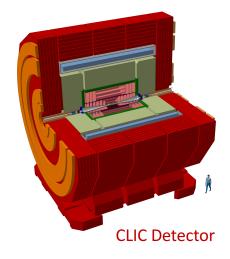
Particles on the beam axis are not on the detector axis, so they will experience vertical dispersion, that brings vertical emittance blow-up. Due to the low nominal $\varepsilon_y \sim 1$ pm, this effect needs to be cured. A compensating and screening **solenoid scheme** has been designed.

Solenoid Compensation Scheme

M. Koratzinos

Two solenoids are introduced in the IR:


- **screening solenoid** that shields the detector field inside the quads (in the quad net solenoidal field=0)
- compensating solenoid in front of the first quad, as close as possible, to reduce the ε_y blow-up (integral BL~0)

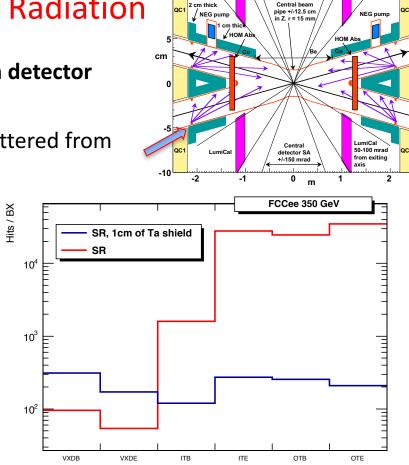

0.3 pm is the overall ε_v blow-up for 2IPs @Z with this compensation design

Geant4 detector and IR modeling

modified CLIC detector model with 2T magnet and FCC-ee IR design:

- vertex layers closer to beamline
- extended tracker to compensate for lower B
- HCAL shrunk to 5.5 interaction lengths
- Yoke shrunk for smaller B

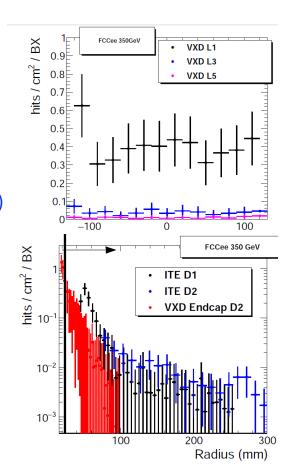
Backgrounds simulations in the detector


- We have performed full simulation studies of effects of various backgrounds mostly on the **Vertex and Tracker** (more recently also on the **luminosity monitor**) part of the modified CLIC detector, estimating **hit density/ occupancy/ deposited energy**.
- Focus on E_{cm} = 350 GeV (tt) as worst case scenario for most of the considered backgrounds.
- Studied:
 - Synchrotron radiation
 - e⁺e⁻ pair production
 - γγ to hadrons

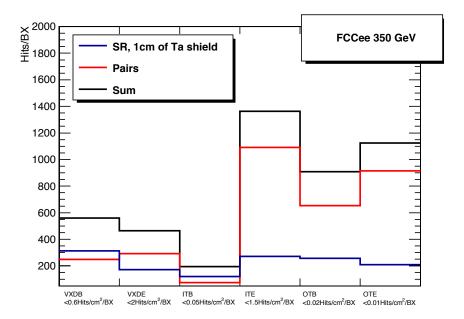
Synchrotron Radiation

- Dominant source of primary background in detector
- Study at top energy (175 GeV)
- Full simulation of the last bend photons scattered from the tip of the mask

• proper shielding (1cm Ta) is effective in intercepting the photons


Pairs production

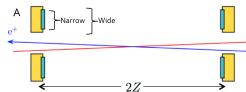
Pairs generation with Guinea Pig


Full simulation studies using DD4hep ILCSoft (geant4 based simulation) / ILCSoft

Assuming a pixel pitch of 20 μm and an average cluster size of 5

- Occupancy/BX ~ 10⁻⁵ for the hottest areas (~10⁻²/BX @ILD-VD)
- For E_{cm} 91.2 GeV
 - Maximum occupancy ~ 2x10⁻⁶ observed in VXD Endcaps
 - However note the very short bunch spacing of ~ 3ns
 - For example: a sensor with readout time of 3µs would integrate over 1000 BX
 - Occupancy / r.o. time ~ 2x10-3

Combined effect of SR and pairs background

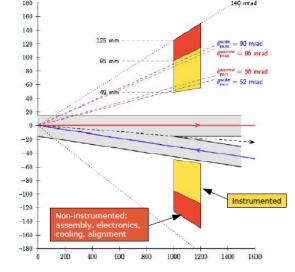


Maximum hit density in the hottest are of each subdetector per bunch crossing

Detector Luminosity Monitor

Luminosity monitoring:

- Absolute target precision 10⁻⁴
- **Relative** for Z lineshape measurement need a relative precision of 2-5 x 10⁻⁵
 - Need cross section comparable to Z production:, i.e. \geq 15 nb
 - Can be achieved via small angle Bhabha scattering e⁺e⁻ \rightarrow e⁺e⁻
 - Very strongly forward peaked control of angular acceptance very important
 - Measured with set of two calorimeters; one at each side of the IP



• Average over SideA and SideB rates: Only dependent to second order on beam parameters: $\frac{\delta \bar{R}}{\bar{R}} = 3\left(\frac{\delta z}{Z}\right)^2 \qquad \frac{\delta \bar{R}}{\bar{R}} = 2\left(\frac{\delta x}{r_{\min}}\right)^2$

Still a big challenge given the available space in the IR

M.DAM

LumiCal Geometry

Cross section: $\sigma = 23$ nb

Geometric precision needed for absolute normalization to 10⁻⁴

> $\delta r_{min} = 1.6 \, \mu m$ $\delta r_{max} = 5.8 \,\mu m$

= 50 µm

Challenges for LumiCal

- Readout electronics
 - Few ns beam crossing time:
 - To maintain backgrounds (off-momentum particles, etc) at a tolerable level, need very fast readout (one or few crossings)
 - Continous beam:
 - No power pulsing possible: heat dissipation, how to maintain mechanical stability
- Control of geometry to few μm
 - For increased acceptance in tight geometry suggest conical layout of monitors
 - Need detailed plan for mechanical assembly
 - Heat dissipation:
 - Need detailed plan for cooling
- High integrated rate particularly at low radii
 - Possible need for radiation tolerant sensors and electronics

FCC-ee group (Copenhagen) invited to join ILC FCAL Collaboration for discussion of forward instrumentation issues

Conclusion and Future Steps

- IR Layout baseline defined
- Defined beam pipe material, apertures, thickness, shieldings
- Synchrotron Radiation in the IR evaluated at all beam energies, together with proper shielding, collimators and/or absorbers
- **G4 detector model** implemented to check backgrounds sustainability
- Luminosity monitor feasible design and position in IR defined
- Solenoid compensation scheme updated following baseline optics

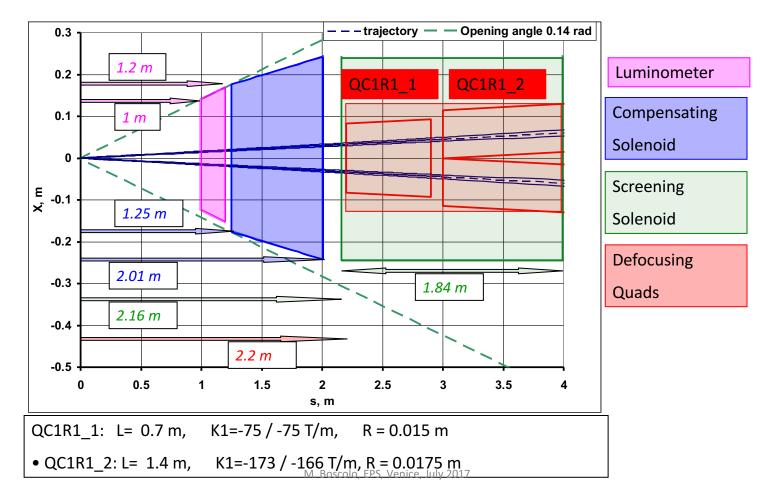
Conclusion and Future Steps

- Wake fields calculations in IR in progress, also different chamber geometries under investigation
- HOM absorber in the central chamber needs further optimization
- Vacuum Chamber heating estimate and water cooling system
- Optimization of SR masks, shielding, collimators, absorbers also with full simulation
- Solenoid Field maps for more realistic studies (like SR from fringe solenoid fields, ..)
- Study of other IR backgrounds (off-momentum beam particles, beam-gas, radiative bhabha, complete γγ-> hadrons)
- Full **G4 detector simulation** combined with the detailed IR geometry
- **QD0 design**: different proposals and design in progress
- Injection backgrounds
- Electron Cloud studies in the IR in progress, SEY<1.1 needed to avoid build-up
- More work will be needed for a more realistic and engineered design of the IR

Back-up

M. Boscolo, EPS, Venice, July 2017

Summary of LumiCal Geometry


- Z position of calorimeter face: z_{face} = 1000 mm
- Effective minimum scattering angle: $\theta_{min} = 55 \text{ mrad}$
- Effective maximum scattering angle: $\theta_{max} = 115 \text{ mrad}$
- Bhabha cross section:

Geometrical precision needed for $\delta L/L = 10^{-4}$:

- Distance between face of two calorimeters: $2\delta z_{face} = 100 \mu m$
- Inner radius of acceptance:
- Outer radius of acceptance:

```
δr<sub>min</sub> = 2 μm
δr<sub>max</sub> = 18 μm
```

Final Focus Magnets Layout

