

STUDIES OF A SCHEME FOR LOW EMITTANCE MUON BEAM PRODUCTION FROM POSITRONS ON TARGET FRANCESCO COLLAMATI (INFN-ROMA) - 8.7.2017

Istituto Nazionale di Fisica Nucleare

Outline

- * Introduction: Why a muon collider
- * Proposal for a novel technique for direct muon production
 - * Target choice & accelerator scheme
 - * Multi-turn simulations
 - * Muons' emittance
- * Test beam
- * Conclusion and perspectives

Why a Muon Collider? * PROs:

Why a Muon Collider? *** PROs:** * Muons are ~200 times heavier than electrons:

*** PROs:**

Muons are ~200 times heavier than electrons:
 Accelerator:

*** PROs:**

- * Muons are ~200 times heavier than electrons: Accelerator:
 - No synchrotron radiation (limit of circular e⁺e⁻ colliders) → much higher energies are reachable (~3TeV in 4km circ.)

*** PROs:**

- * Muons are ~200 times heavier than electrons: Accelerator:
 - No synchrotron radiation (limit of circular e⁺e⁻ colliders) → much higher energies are reachable (~3TeV in 4km circ.)
 - Much smaller energy spread of the beam → much higher energy resolution
 - Precise measurements and access to new resonances

*** PROs:**

- * Muons are ~200 times heavier than electrons: Accelerator:
 - No synchrotron radiation (limit of circular e⁺e⁻ colliders) → much higher energies are reachable (~3TeV in 4km circ.)
 - Much smaller energy spread of the beam → much higher energy resolution
 - Physics:
 - ▶ Higgs coupling \propto m²

Precise measurements and access to new resonances

Much bigger production of Higgs boson (also s-channel)

Why a Muon Collider? * CONs:

Why a Muon Collider? * CONs: * Muons decay in 2.2µs!

The whole chain (generation, a quick!

The whole chain (generation, acceleration, interaction) must be very

*** CONs:**

- * Muons decay in 2.2µs!
 - The whole chain (generation, acceleration, interaction) must be very quick!
- ▶ Traditional muon production scheme leads to large emittance beams: $p + target \rightarrow π/K \rightarrow µ$
 - ▶ Muons are produced with a variety of angles and energies (P_{μ} ~100MeV/c)
 - Cooling needed!
 tradeoff monochromaticity/luminosity

* Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$

* Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \to \mu^+\mu^-$

 ★ Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- → \mu^+\mu^-$ ★ Advantages:

Novel Approach Direct muon production

* Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \to \mu^+\mu^-$

*** Advantages:**

Low emittance possible:

 θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold

* Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$

***** Advantages:

Low emittance possible:

 θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold

Small energy spread: depends on Js, small at threshold (210MeV)

- * Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \to \mu^+\mu^-$
 - ***** Advantages:
 - **Low emittance** possible:
 - θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold
 - Small energy spread: depends on Js, small at threshold (210MeV)

- * Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \to \mu^+\mu^-$
 - ***** Advantages:
 - **Low emittance** possible:
 - θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold
 - Small energy spread: depends on Js, small at threshold (210MeV)

 - collection)

- * Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \to \mu^+\mu^-$
 - ***** Advantages:
 - **Low emittance** possible:
 - θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold
 - Small energy spread: depends on Js, small at threshold (210MeV)

 - collection)
 - **Disadvantages:**

- * Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \to \mu^+\mu^-$
 - ***** Advantages:
 - **Low emittance** possible:
 - θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold
 - Small energy spread: depends on Js, small at threshold (210MeV)

 - collection)
 - **Disadvantages:**
 - * Rate: much smaller cross section wrt protons (µb vs mb)

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

* Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$

* Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$ Criteria: *

* Due to low cross section, the target choice is crucial:
 N_{µµ} = N_e+ρ_e-Lσ_(e+e-→µ+µ-)
 * Criteria:
 * ♣ emittance → thin target

Due to low cross section, the target choice is crucial:
 N_{µµ} = N_e+ρ_e-Lσ_(e+e-→µ+µ-)
 Criteria:
 ★ emittance → thin target
 ★ rate → high Z&ρ

- * Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$ * Criteria:
 - ★ emittance → thin target
 - * **Trate** \rightarrow high Z&p
 - ★ positron loss (brem.+bhabha) (recirculation) → low Z

- * Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- * Criteria:
 - ★ emittance → thin target
 - * **\uparrow** rate \rightarrow high Z&p
 - ★ positron loss (brem.+bhabha) (recirculation) → low Z
 - * Very intense e⁺ source (10¹⁸ e⁺/s @T):

- * Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- * Criteria:
 - ★ emittance → thin target
 - * **t** rate \rightarrow high Z&p
 - ★ positron loss (brem.+bhabha) (recirculation) → low Z
- * Very intense e⁺ source (10¹⁸ e⁺/s @T): * Possible choices:

- * Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- * Criteria:
 - ★ emittance → thin target
 - * **1** rate \rightarrow high Z&p
 - ★ positron loss (brem.+bhabha) (recirculation) → low Z
 - * Very intense e⁺ source (10¹⁸ e⁺/s @T):
- * Possible choices:
 - * Heavy materials (Cu...) \Leftrightarrow thin target ($\varepsilon_{\mu \propto} L$)
 - * Small ε_{μ} , but high ρ brings to MS and e^+ loss

- * Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- * Criteria:
 - ★ emittance → thin target
 - * **1** rate \rightarrow high Z&p
 - ★ positron loss (brem.+bhabha) (recirculation) → low Z
 - * Very intense e⁺ source (10¹⁸ e⁺/s @T):
- * Possible choices:
 - * Heavy materials (Cu...) \Leftrightarrow thin target ($\varepsilon_{\mu \propto} L$)
 - * Small ε_{μ} , but high ρ brings to MS and e⁺ loss
 - ★ Very light materials ⇔ thick target O(1m)
 - * Emittance growth due to extended production of muons

- * Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- * Criteria:
 - ★ emittance → thin target
 - * **1** rate \rightarrow high Z&p
 - ★ positron loss (brem.+bhabha) (recirculation) → low Z
 - * Very intense e⁺ source (10¹⁸ e⁺/s @T):
- * Possible choices:
 - * Heavy materials (Cu...) \Leftrightarrow thin target ($\varepsilon_{\mu \propto} L$)
 - * Small ε_{μ} , but high ρ brings to MS and e^+ loss
 - ★ Very light materials ⇔ thick target O(1m)
 - * Emittance growth due to extended production of muons
 - * Possible tradeoff: not too heavy materials (Be, C, Li) and not to thin target

Accelerator Scheme

From e⁺ source to ring:

▷ e⁻ on conventional Heavy Thick Target (TT) for e⁺e⁻ pairs production

possibly with γ produced by e⁺ stored beam on T

Adiabatic Matching Device (AMD) for e⁺ collection Acceleration (linac / booster), injection

From e⁺ source to ring:

▷ e⁻ on conventional Heavy Thick Target (TT) for e⁺e⁻ pairs production

possibly with γ produced by e⁺ stored beam on T

Adiabatic Matching Device (AMD) for e⁺ collection Acceleration (linac / booster), injection

▶ <u>e⁺ ring</u>:

A 6.3 km 45 GeV storage ring with target T for muon production

From e⁺ source to ring:

▷ e⁻ on conventional Heavy Thick Target (TT) for e⁺e⁻ pairs production

▶ possibly with y produced by e⁺ stored beam on T

Adiabatic Matching Device (AMD) for e⁺ collection Acceleration (linac / booster), injection

▶ e⁺ ring:

A 6.3 km 45 GeV storage ring with target T for muon production

From µ⁺µ⁻ production to collider:

- Produced by the e⁺ beam on target T with E(μ)≈22GeV, γ(μ)≈200 → **τ**_{LAB}(μ)≈500μs
- Accumulation Ring: 60m isochronous and high mom. accept. for μ recomb. ($\tau_{\mu}^{LAB} \sim 2500$ turns)
- Fast acceleration
- Muon collider

	e ⁺ ring parameter	unit	Vá	
	Circumference	km	(
	Energy	GeV		
	bunches	#		
	e+ bunch spacing = Trev (AR)	ns		
	Beam current	mA		
	N(e+)/bunch	#	3 •	
	Uo	GeV	С	
	SR power	MW		
(also 28 km foreseen to be studied as an option)				

	e ⁺ ring parameter	unit	Vá	
	Circumference	km	(
	Energy	GeV		
	bunches	#		
	e+ bunch spacing = Trev (AR)	ns		
	Beam current	mA		
	N(e+)/bunch	#	3 •	
	Uo	GeV	С	
	SR power	MW		
(also 28 km foreseen to be studied as an option)				

6TeV µ collider dra Parameters (no lattice y

[NIM A 807 101-107 (2016)]

$\mu^+\mu^-$ rate = 9 10¹⁰ Hz, ϵ_N = 40 nm if: LHeC like e⁺ source with 25% mom. according and ϵ dominated by μ production

thanks to very small emittance (and lower beta*) **comparable luminosity with lower N**µ**/bunch** (→ lower background)

> Of course, a needed to estimate o

			LEMC-6TeV
- tr	Parameter	Units	
	LUMINOSITY/IP	cm ⁻² s ⁻¹	5.09E+34
	Beam Energy	GeV	3000
	Hourglass reduction factor		1.000
	Muon mass	GeV	0.10566
(a+)	Lifetime @ prod	sec	2.20E-06
yel)	Lifetime	sec	0.06
	c*tau @ prod	m	658.00
	c*tau	m	1.87E+07
	1/tau	Hz	1.60E+01
	Circumference	m	6000
	Bending Field	Т	15
	Bending radius	m	667
	Magnetic rigidity	Tm	10000
ept. e ⁺	Gamma Lorentz factor		28392.96
	N turns before decay		3113.76
	b _x @ IP	m	0.0002
	b _v @ IP	m	0.0002
	Beta ratio		1.0
	Coupling (full current)	%	100
5	Normalised Emittance x	m	4.00E-08
	Emittance x	m	1.41E-12
	Emittance y	m	1.41E-12
	Emittance ratio		1.0
	Bunch length (zero current)	mm	0.1
	Bunch length (full current)	mm	0.1
	Beam current	mA	48
	Revolution frequency	Hz	5.00E+04
	Revolution period	S	2.00E-05
	Number of bunches	#	1
	N. Particle/bunch	#	6.00E+09
design study is	Number of IP	#	1.00
have a reliable	s _x @ IP	micron	1.68E-02
nave a reliable	s _y @ IP	micron	1.68E-02
of performances	s _{x'} @ IP	rad	8.39E-05
	s _{v'} @ IP	rad	8.39E-05

Radiological hazard due to neutrinos

p on target option **3** 10¹³ μ /s muon rate: e⁺ on target option 9 10¹⁰ μ/s

Low emittance 45GeV e⁺ ring

section yet)

- constant no errors
- studies

Circumference 6.3 km: 197 m x 32 cells (no injection)

Physical aperture=5 cm Good agreement between MADX PTC / Accelerator Toolbox, both used for particle tracking in our

Parameter	Units	
Energy	GeV	45
Circumference	m	6300
Coupling(full current)	%	1
Emittance x	m	5.73×10^{-9}
Emittance y	m	5.73×10^{-1}
Bunch length	mm	3
Beam current	mA	240
RF frequency	MHz	500
RF voltage	GV	1.15
Harmonic number	#	10508
Number of bunches	#	100
N. particles/bunch	#	3.15×10^{11}
Synchrotron tune		0.068
Transverse damping time	turns	175
Longitudinal damping time	turns	87.5
Energy loss/turn	GeV	0.511
Momentum compaction		1.1×10^{-4}
RF acceptance	%	± 7.2
Energy spread	dE/E	1×10^{-3}
SR power	MW	120

1. Initial 6D distribution from the equilibrium emittances 2.6D e⁺ distribution tracking up to the target (AT and MAD-X PTC) 3. Tracking through the target (FLUKA/GEANT4)
4. Back to tracking code

1. Initial 6D distribution from the equilibrium emittances 2.6D e⁺ distribution tracking up to the target (AT and MAD-X PTC) 3. Tracking through the target (FLUKA/GEANT4) 4. Back to tracking code

ATMAD. X PTC

TARGET

1. Initial 6D distribution from the equilibrium emittances 2.6D e⁺ distribution tracking up to the target (AT and MAD-X PTC) 3. Tracking through the target (FLUKA/GEANT4) 4. Back to tracking code At each pass through the Target the e⁺ beam:

1. Initial 6D distribution from the equilibrium emittances 2.6D e+ distribution tracking up to the target (AT and MAD-X PTC) 3. Tracking through the target (FLUKA/GEANT4) 4. Back to tracking code At each pass through the Target the e⁺ beam: ATMAD.X PTC Gets an angular kick due to MS -> changes beam divergence and size -> emittance increase

TARGET

BEAM-LINE

- 1. Initial 6D distribution from the equilibrium emittances 2.6D e⁺ distribution tracking up to the target (AT and MAD-X PTC) 3. Tracking through the target (FLUKA/GEANT4) • 4. Back to tracking code
- At each pass through the Target the e⁺ beam:
- Gets an angular kick due to MS -> changes beam divergence and size -> emittance increase
- Undergoes bremsstrahlung energy loss → crucial role of momentum acceptance of e⁺ ring

ATMAD.X PTC

TARGET

- 1. Initial 6D distribution from the equilibrium emittances 2.6D e+ distribution tracking up to the target (AT and MAD-X PTC)
- 3. Tracking through the target (FLUKA/GEANT4)
- 4. Back to tracking code

- At each pass through the Target the e⁺ beam: Gets an angular kick due to MS -> changes beam divergence and size -> emittance increase
- Undergoes bremsstrahlung energy loss → crucial role of momentum acceptance of e⁺ ring

natural radiation damping

BEAM-LINE

TARGET

Positron lifetime with Be target

BEAM-LINE

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along

after target, before turn

10000

-0.9606

6.584

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along

turn n 35

L. Phase Space

Entries 3548

Mean x 0.8593

Mean y -0.0808

Std Dev x 10.53

Std Dev y 12.3

10

turn n 35

y [mm]

35 turns superimposed

15

bremsstrahlung and multiple scattering artificially separated by considering alternatively effects in longitudinal (dominated by bremsstrahlung) and transverse (dominated by multiple scattering) phase space due to target; in **blue** the combination of both effects (realistic target)

- Some bremsstrahlung contribution due to residual dispersion at target
- Multiple scattering contribution in line with **expectation** (nD= number of damping turns): $\sigma_{MS} = \frac{1}{2} \sqrt{n_D} \sigma'_{MS} \beta$
- One pass contribution due to the target: $\sigma'_{MS} = 25 \mu rad$

Muons' emittance $\epsilon(\mu) = \epsilon(e^+) \oplus \epsilon(MS) \oplus \epsilon(rad) \oplus \epsilon(prod) \oplus \epsilon(AR)$

 $\epsilon(e+) = e^+$ emittance ε(MS) = multiple scattering contribution ε(rad) = energy loss (brem.) contribution ε(prod) = muon production contribution $\epsilon(AR) = accumulator ring contribution$

Also test different materials:

- Crystals in channeling: better ε(MS), ε(rad), ε(prod)
- Light liquid jet target: better ε(MS), ε(rad) and gain in lifetime & target thermo-mechanical characteristics

would like all contributions of same size. knobs:

β_x , β_y @target & target material β_x , β_y , D_x @ target & target material E(e+) & target thickness **AR optics & target**

<u>Now</u>: $\varepsilon(\mu)$ dominated by $\varepsilon(MS) \oplus \varepsilon(rad) \rightarrow lower D \& \beta s @ target with beam$ spot at the limit of target survival

Test Beam

- * Foreseen for the last week of July 2017, @CERN North Area (H4) founded by CSN1-INFN
- * Use tertiary 45GeV e⁺ beam, up to 5×10^6 /spill with amorphous targets, to: → measure *muon production* rate, cross section... → measure muons kinematic properties: emittance...

Proposal of a beam test to study the feasibility of a low emittance muon beam using positrons on target

M. Antonelli¹, F. Anulli², E. Bagli³, F. Bedeschi⁴, A. Bertolin⁵, M. Biagini¹, M. Boscolo¹, R. Camattari³, G. Cibinetto³, F. Collamati¹, S. Dabagov¹, R. Di Nardo¹, M. Dreucci¹, V. Guidi³, S. Guiducci¹, D. Lucchesi⁵, A. Lupato⁵, A. Mazzolari³, M. Morandin⁵, L. Palumbo², M. Prest⁶, R. Rossin⁵, M. Rotondo¹, L. Sestini⁵, T. Spadaro¹, R. Tenchini⁴, G. Tonelli⁴, E.Vallazza⁶ and M. Zanetti⁵

> ¹Frascati National Laboratory, INFN ²University La Sapienza, Rome and INFN ³University of Ferrara and INFN ⁴University of Pisa and INFN ⁵University of Padua and INFN ⁶University of Insubria and INFN

* Expected $\sigma_{ee\mu\mu}$ < 1 µb, 5 order of magnitudes smaller than Bhabha!

→ a few muon pairs per spill

Summary

- * Low emittance $(\rightarrow$ no needing for cooling)
 - * Low rate (\rightarrow target load)
- * Optimisation requires other issues to be preliminary addressed
 - * Target material & characteristics
 - * e⁺ accelerator complex
 - Muons accumulator rings design
- parameters, lattices, targets, etc. in order to assess the ultimate performances of the machine

* A novel approach to muon production can allow the design of a muon collider:

* First design of low emittance e⁺ ring with preliminary studies of beam dynamics

* Preliminary studies are promising, we will continue to optimise all the

Backup

Muon Accumulator Rings considerations

- * Isochronous optics with high momentum acceptance ($\delta \ge 10\%$)
- Multiple pass through the target leads to emittance increase due to Multiple Scattering:
 - * Beam divergence:
 - * A factor 3 (2) increase in beam divergence is expected at 45 (50)GeV
 - * Beam size:
 - * Depends on optics, need low-β to suppress size increase
- * This contributions can be strongly reduced with crystals in channeling

Target considerations

- * The goal is to have a beam size as small as possible, but: * Constraints for power removal (200kW) and temperature rise move target (for free with liquid jet)
- → e+ bump every 1 munch muon accumulation
- * Possibilities:
 - * Solid target: simpler and better wrt temperature rise: * Be, C
 - * Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 µm, N=1.7x1011 p/bunch, up to 288 bunches in one shot
 - * Liquid target: better wrt power removal
 - * Li, difficult to handle! lighter materials (H, He)
 - * Lli jets examples from neutron production (Tokamak divertor). 200kW beam power removal seems feasible, minimum beam size to be understood

[Kavin Ammigan 6th High Power Targetry Workshop]

before target, starting point

after 40 turns

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along the ring (not at IR center in this example)

Preliminary considerations on e⁺ source

Positrons in the target create photons at very small angles wrt to the beam (via Brem and (little) radiative bhabha: $e + e - \rightarrow e + e - \gamma)$

Dipole

Positrons in the target create photons at very small angles wrt to the beam (via Brem and (little) radiative bhabha: $e + e - \rightarrow e + e - \gamma)$

Dipole

Photons in the Generator create positrons (via pair production)

Positrons in the target create the beam (via Brem and (little) radiative bhabha: $e + e - \rightarrow e + e - \gamma)$

Preliminary considerations on e⁺ source

Geant4 simulation

Be Target

Total flux

Generator of 5X₀ of W (1.8cm)

source

generator

Preliminary considerations on e⁺ source Run 0 (100 events)

Geant4 simulation

Generator of 5X₀ of W (1.8cm)

source

dipole

Geant4 simulation

Electron flux

Mon Jan 23 16:11:25 2017

Generator of 5X₀ of W (1.8cm)

PositronSource