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Muons are ~200 times heavier than electrons:
Accelerator:

No synchrotron radiation (limit of circular e+e- colliders)  
➜ much higher energies are reachable  
(~3TeV in 4km circ.)
Much smaller energy spread of the beam 
➜ much higher energy resolution

Precise measurements and access to new resonances
Physics:

Higgs coupling ∝m2  
➜ Much bigger production of Higgs boson (also s-channel)

3



Why a Muon Collider?

4



Why a Muon Collider?
CONs:

4



Why a Muon Collider?
CONs:

Muons decay in 2.2μs!
The whole chain (generation, acceleration, interaction) must be very 
quick!

4



Why a Muon Collider?
CONs:

Muons decay in 2.2μs!
The whole chain (generation, acceleration, interaction) must be very 
quick!

Traditional muon production scheme leads to large emittance beams: 
p + target ➝ π/K ➝ μ

Muons are produced with a variety of angles and energies (Pμ~100MeV/c)
Cooling needed!  
➜ tradeoff monochromaticity/luminosity
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on fixed target:

Advantages:
Low emittance possible:  
θμ is tunable with √s, and is very small close to the threshold

Small energy spread: depends on √s, small at threshold (210MeV)

Low background: low emittance allows for good luminosity with reduced muon flux

Reduced losses from decay: asymmetric collision allows high boost (and both muons’ 
collection)

Disadvantages:
Rate: much smaller cross section wrt protons (μb vs mb)
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Small εμ, but high ρ brings to MS and e+ loss
Very light materials ⇔ thick target O(1m)
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Key topics for this scheme: 
➡Low emittance and high mom. acc. 

45GeV e+ ring

➡O(100kW) class target in the e+ ring

➡High rate positron source

➡High mom. acc. μ accumulator rings
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LEMC-6TeV
Parameter Units

LUMINOSITY/IP cm-2 s-1 5.09E+34
Beam Energy GeV 3000

Hourglass reduction factor 1.000
Muon mass GeV 0.10566

Lifetime @ prod sec 2.20E-06
Lifetime sec 0.06

c*tau @ prod m 658.00
c*tau m 1.87E+07
1/tau Hz 1.60E+01

Circumference m 6000
Bending Field T 15

Bending radius m 667
Magnetic rigidity T m 10000

Gamma Lorentz factor 28392.96
N turns before decay 3113.76

bx @ IP m 0.0002
by @ IP m 0.0002

Beta ratio 1.0
Coupling (full current) % 100

Normalised Emittance x m 4.00E-08
Emittance x m 1.41E-12
Emittance y m 1.41E-12

Emittance ratio 1.0
Bunch length (zero current) mm 0.1
Bunch length (full current) mm 0.1

Beam current mA 48
Revolution frequency Hz 5.00E+04

Revolution period s 2.00E-05
Number of bunches # 1
N. Particle/bunch # 6.00E+09

Number of IP # 1.00
sx @ IP micron 1.68E-02
sy @ IP micron 1.68E-02
sx' @ IP rad 8.39E-05
sy' @ IP rad 8.39E-05

6TeV μ collider draft  
Parameters (no lattice yet)

9

µ+µ- rate  = 9 1010 Hz, εN = 40 nm
if: LHeC like e+ source with 25%  mom. accept. e+ 
ring and ε dominated by µ production

[ NIM A 807  101-107 (2016)]

thanks to very small emittance  
(and lower beta*)  


comparable luminosity with 
lower Nµ/bunch 

(→ lower background) 

Of course, a design study is 
needed to have a reliable 
estimate of performances 



Radiological hazard due to neutrinos

10

1	mS/year

p	on	target	

e+ on	target	

 muon rate:     p on target option 3 1013 µ/s
                     e+ on target option 9 1010 µ/s

Colin Johnosn, Gigi Rolandi and Marco Silari



Low emittance 45GeV e+ ring
• Circumference 6.3 km: 197 m x 32 cells (no injection 

section yet) 
 
 
 
 
 
 
 

• Physical aperture=5 cm  
constant no errors 


• Good agreement between  
MADX PTC / Accelerator  
Toolbox, both used for  
particle tracking in our  
studies
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Preliminary low-β IR for muon target 
insertion 

• Further optimisations are underway: 

• Match the transverse minimum beam size with 

constraints of target thermo-mechanical stress

• Match with other contributions to muon emittance 

(production, accumulation)  

• Dynamic and momentum aperture can be optimised

12

@target:		bx=1.6m;	by=1.7m;	Dx=5.4mm

@target location:  

- Dx ≈ 0

- low-β

Dynamic aperture

Momentum aperture
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Evolution of e+ beam size and 
divergence
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total
multi-scattering
bremsstrahlung

bremsstrahlung and multiple scattering 

artificially separated by considering 
alternatively effects in longitudinal

(dominated by bremsstrahlung)


and transverse (dominated by multiple 
scattering) phase space due to target; 

in blue the combination of both effects 

(realistic target)


• Some bremsstrahlung contribution due to 
residual dispersion at target


• Multiple scattering contribution in line with 
expectation (nD= number of damping turns):


• One pass contribution due to the target: 
σ"# =

1
2	 n)	

� σ"#+ 	β
σ"#$ = 25	µrad
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Muons’ emittance
ε(μ) =  ε(e+) ⊕ ε(MS) ⊕ ε(rad) ⊕ ε(prod) ⊕ ε(AR) 

ε(e+)     = e+ emittance 
ε(MS)   = multiple scattering contribution                   βx, βy @target & target material  
ε(rad)   = energy loss (brem.) contribution                  βx, βy, Dx @ target & target material  
ε(prod) = muon production contribution                     E(e+) & target thickness 
ε(AR)    = accumulator ring contribution                     AR optics & target 

                                     Now: ε(μ) dominated by ε(MS) ⊕ ε(rad) ➜ lower D & βs @ target with beam 
spot at the limit of target survival


Also test different materials:

• Crystals in channeling: better ε(MS), ε(rad), ε(prod)

• Light liquid jet target: better ε(MS), ε(rad) and gain in lifetime & target thermo-mechanical 

characteristics 

would like all contributions of same size. knobs:
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Test Beam
Foreseen for the last week of July 2017, @CERN North Area (H4)  
founded by CSN1-INFN 
Use tertiary 45GeV e+ beam, up to 5x106 /spill with amorphous targets, to: 
➜ measure muon production rate, cross section.. 
➜ measure muons kinematic properties: emittance…

Si	telescopes

la
rg
e	
m
uo

n
dr
ift
	

ch
am

be
r

absorber	

deflected	µ-

deflected	µ+

deflected	e+-beam

e+ SD4

SD5
SD6

SD6

Bending	Magnet
field:		1.26	T		

Target:		3-6	cm	thick	
berillium

23.787 24.052 24.60 25.60 26.20

0.50	m

Expected σeeμμ < 1 μb, 5 order of magnitudes 
smaller than Bhabha! 
➜ a few muon pairs per spill
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Summary
A novel approach to muon production can allow the design of a muon collider:


Low emittance (➜ no needing for cooling) 
Low rate (➜ target load) 

First design of low emittance e+ ring with preliminary studies of beam dynamics

Optimisation requires other issues to be preliminary addressed


Target material & characteristics

e+ accelerator complex

Muons accumulator rings design


Preliminary studies are promising, we will continue to optimise all the 
parameters, lattices, targets, etc. in order to assess the ultimate 
performances of the machine
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Backup
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Muon Accumulator Rings 
considerations

Isochronous optics with high momentum 
acceptance (δ≳10%)

Multiple pass through the target leads to 
emittance increase due to Multiple Scattering:


Beam divergence:

A factor 3 (2) increase in beam 
divergence is expected at 45 (50)GeV


Beam size:

Depends on optics, need low-β to 
suppress size increase


This contributions can be strongly reduced with 
crystals in channeling
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Target considerations
The goal is to have a beam size as small as possible, but:

Constraints for power removal (200kW) and temperature rise 
➜ move target (for free with liquid jet) 
➜ e+ bump every 1 munch muon accumulation

Possibilities:


Solid target: simpler and better wrt temperature rise:

Be, C


Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 
300 μm, N=1.7x1011 p/bunch, up to 288 bunches in one shot


Liquid target: better wrt power removal

Li, difficult to handle! lighter materials (H, He)


Lli jets examples from neutron production (Tokamak divertor). 200kW beam power 
removal seems feasible, minimum beam size to be understood
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Multi-turn simulations

MAD-X PTC & GEANT4 6-D tracking simulation of 

e+ beam with 3 mm Be target along the ring (not at 

IR center in this example)

before target,

starting point

after 40 turns

40
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Preliminary considerations on  
e+ source
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Geant4 simulation

Generator of 5X0 of 
W (1.8cm)
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