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• We know how QCD works, but we cannot 
calculate it at low Q2 

• We can still model the physics, but model 
uncertainties (PDF, UE tunes, 
hadronization) affect our predictions  
– The issue is especially relevant when 

we deal with multijet final states 
• In addition, CPU is a limiting factor 

– Centrally provided QCD samples give 
effective luminosity much smaller than 
experimental data  

– How can we reduce our systematics in 
our searches for new phenomena? 

 



Data-Driven Modeling 

Top: B-tag and kNN-based dijet mass 
models in search for bbHbbbb,  

CMS-HIG-12-027 

In searches for NP or precision measurements 
at the LHC we usually either 

1) rely on common data-driven techniques to 
predict relevant spectra: 

• Sideband-based methods  
• ABCD extrapolations  b-tag matrices  kNN 
• Access to large-enough "control samples" often 

limits the accuracy of these predictions 
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2) or throw our hands up:  
• Find a "reasonable" functional form, fit it to 

data, look for local deviations as possible hints of 
new particles 

Statistical precision of Run 2 datasets challenges 
methods based on "QCD inspired" parametric forms 
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The modeling problem is made harder by the  
booming of statistical learning methods: one does not 
content oneself to model just a 1D PDF, but wants a 
model of the full multi-D space  
 



QCD events laid bare 
• High-energy QCD events come from 

a complicated matrix element, but 
in essence they originate from a 
22 process when the final state is 
enriched in complexity by ISR, FSR, 
MPS, PU… 
 

• In the days of e+e- machines one 
studied hadronic events by defining 
a thrust variable to interpret the 
event 
– Thrust axis = axis that maximizes T 

= ΣpT*|cosφ|  with φ  = angle 
particle-axis (or jet-axis) 

 

φT 

Thrust axis 

The axis is supposed to coincide with the direction of the two final-state partons 
– at least at LO in e+e- collisions 
 



QCD events laid bare 
In hadron collisions one has a boost along z which breaks the axis 
into two semiaxes, back-to-back in azimuth but not in R-z 
 

– Never mind – we can use the T axis in the transverse plane 
– What do we do with it ? 

  Define hemispheres (or hemi-cylinders): 
  cosφ > 0 / cosφ < 0 



QCD events laid bare 

 
Working assumption: In large T events, all the physics arising from 
ISR, FSR, MPS, PU is "second order" in defining the topology of the 
produced jets; and each of the two leading order partons does not 
influence the physics on the other hemisphere   
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The mixing procedure 

1) For each event in the original 
sample: 

- Find transverse thrust axis 
i.e., determine angle φ such that  
 
is maximized 

T = ∑𝑝𝑝𝑇𝑇 𝑗𝑗𝑗𝑗𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐(φT − φjet) 

φ 

T axis 

x 

y 



The mixing procedure 

1) For each event in the original 
sample: 

- Find transverse thrust axis 
- Divide event in two halves 

using plane orthogonal to it 
This defines two jet collections 
for each event (hemispheres) 

T axis 



The mixing procedure 

1) For each event in the original 
sample: 

- Find transverse thrust axis 
- Divide event in two halves 

using plane orthogonal to it 
- Store resulting hemispheres 

in the "hemisphere library" 
 



Mixing procedure - 2 
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2) Take again original sample: for 
each event 

– Find transverse thrust axis,  
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Mixing procedure - 2 
2) Take again original sample: for 
each event 

– Find transverse thrust axis, 
identify the two hemispheres 
making it up 

– Look in hemisphere library for 
two SIMILAR hemispheres 

– Construct an artificial event 
with them 

The procedure creates an artificial 
dataset which can be used for 
modeling purposes 
 

 

Hemisphere similarity criteria :  
• Number of jets (req. equal) 
• Number of b-tags (req. equal) 
• Thrust   
• Thrust minor 
• Hemisphere mass 
• Sum of jets pz components 
The 4 continuous variables are used to 
define a kNN distance which yields the 
similarity measure: 
 
 

ORIGINAL DATASET 

ARTIFICIAL DATASET 



Test setup: HHbbbb search 
• As a test of the procedure we take fast-simulated LHC ppmultijet events 

– Events are selected to contain >=4 pT>30 GeV jets, |η|<2.5, b-tagged with medium 
requirements (ε=0.6, a=0.01), mimicking a 2016 CMS analysis   

– Leading b-tagged jets are paired by minimum ΔMjj criterion to compute M12, M34 
combinations 

– A total of 40 kinematic variables are used for tests 
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Then we do our magic: 
1) The selected data constitutes the "original sample" 
2) A hemisphere library is constructed with them 
3) Event mixing is then applied, obtaining an artificial sample 
 
The kinematics of original and artificial data can be compared  
 



A look at 1D kinematic distributions 
• The modeling of 1D marginals can be checked by comparing QCD+TT versus its 

artificial replica 
• No discrepancies are observed in any of the tested distributions, e.g. see ones below 

Distributions 
and ratio 
between 

original and 
artificial 
samples 

Left, top to 
bottom: HT, M12, 
M34, leading jet pT  

Right, top to 
bottom: Δφ12, 
Δφ23, Δφ34, Δη23 



Signal injection tests 
One may verify that the modeling ignores a small signal component by 
injecting it in the original sample before library creation, and comparing, 
e.g., dijet mass distributions (M12, M34) of original and artificial datasets 

[Fine print: above, to show the effect of a 0.5%-ish signal contamination we use a  
correspondingly populated hemisphere library. However a signal of that size would not be  
visible, so we apply the mixing to a sample with 100x larger signal contamination.]  

Top: M12 distribution for 
QCD+TT events with x10,000 
HH contribution (blue 
points); artificial dataset (red 
points) rescaled to QCD+TT 
component alone (blue 
histogram); HH component 
(black histogram)  
 
Bottom: same, for M34 
distribution 



Mapping of QCD and HH 
In fact, one may check where signal and background events get mapped, by 
studying the dijet mass distributions of these events separately. 

One sees that a small 
signal contamination  
acquires after mixing 
a background-like  shape 
even in signal-distinctive 
distributions  
 
The majority component 
(QCD + TT) of the selection 
is instead mapped onto 
itself nicely, and remains 
insensitive of the signal 
contamination   

Distributions of M12 and M34 in signal events (top row) and background 
events (bottom row). Black: original data; blue: artificial (mixed) data 



Fits to the signal component 
A more quantitative way to study the "dilution" of the minority component in 
the artificial dataset is to fit a discriminant variable in original data as the sum 
of signal+background, using the artificial data distribution as a model of the 
background 

– E.g. we perform a 2-D fit to the M12-M34 plane 
 

• If the background model provided by event mixing is sound, the bias on the 
extracted signal fraction should be small (<20% - the typical psychological 
threshold used in LHC searches) 

2D mass distribution for original data (left), background model (center), and signal model (right) 



Bias study 
The bias to the signal fraction one may fit using artificial data as background model is 
compatible with zero for signal fraction of a few percents, and only becomes evident 
above 5%, highlighting that the method is well suited to typical LHC searches. 

Above: Bias (%) = 100*(Fs
fit-Fs

true)/Fs
true as a function of the true signal fraction 

Inset: dijet mass data (black points), 
fit result (blue curve), background 
(black curve) and signal (red) 
components in M12 marginal 
distribution from 2D fit 

5% 

Fs
true 

 



Conclusions 
• Contrarily to common wisdom, event mixing is a valid technique for high-pT physics 

modeling at hadron colliders 
– The trick is to use the transverse event characteristics as a basis 

 
• Multi-jet backgrounds can be accurately modeled for searches and measurements by 

creating and resampling hemisphere libraries 
– Particularly useful in small signal searches when QCD is dominant background 

• The technique has already been used for a HHbbbb search in 2015 LHC data (CMS-
PAS-HIG-16-017), and is being extended to new searches 



Conclusions 

 
• The modeling has been shown to be valid in the full multi-D space, enabling the use 

of artificial data as training sample for MVA classification tasks 
 

• Mixing can also be used to multiply the statistics of the original sample, shrinking the 
statistical uncertainty of the model  very promising developments awaited soon 
 

• A paper is in preparation 
– A public report (D4.1 of AMVA4NewPhysics) discussing multi-D hypothesis tests is already 

available at  https://tinyurl.com/yd2vfglt 

• Contrarily to common wisdom, event mixing is a valid technique for high-pT physics 
modeling at hadron colliders 
– The trick is to use the transverse event characteristics as a basis 

 
• Multi-jet backgrounds can be accurately modeled for searches and measurements by 

creating and resampling hemisphere libraries 
– Particularly useful in small signal searches when QCD is dominant background 

• The technique has already been used for a HHbbbb search in 2015 LHC data (CMS-
PAS-HIG-16-017), and is being extended to new searches 

https://tinyurl.com/yd2vfglt


Thanks for your attention! 
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