Highlights of the ANTARES Neutrino Telescope

Annarita Margiotta
Dipartimento di Fisica e Astronomia dell’Università and INFN Bologna
on behalf of the ANTARES collaboration

HEP-EPS 2017, 6 Jul 2017 - Venezia
ANTARES: the largest neutrino telescope in the Northern hemisphere

Scientific goals

• Neutrino astrophysics
• Multi-messenger studies
• Dark matter searches
• Atmospheric neutrinos
• Exotic particles search: nuclearites, monopoles
• Acoustic neutrino detection
• Earth and Sea sciences

Not discussed today

2006 PARTIAL CONFIGURATION
2008 COMPLETED
How does a ν telescope work?

Neutrino detection principle

$\nu_{\mu} \rightarrow \mu^{-}$

3D PMT array

Cherenkov light from μ

2500 m depth

43°

Measurement:
Time & position of hits

$\langle \theta_{\mu-\nu} \rangle = \frac{1.5^\circ}{\sqrt{E_\nu[\text{TeV}]}}$

$\mu (~ \nu)$ trajectory
Event topology

- **μ±**
- **neutrino or charged lepton**
- **atmospheric muon**

Background strongly reduced with geometrical cuts and quality requirements on reconstruction.

Ideal tool for astronomy
- Angular resolution <0.4°
- @E_ν > 10 TeV; 90% purity

Angular resolution < 3°
- Shower within ≈ 10 m → contained events
- ν energy estimate better than 10%

μ±

(−) ν_μ
- muon neutrino, CC only (track reconstruction)

ν_x
- all neutrino flavours, CC & NC (shower reconstruction)
The ANTARES site

Institut M. Pacha
control room

La Seyne-sur-Mer

Electro-optical Cable of 40 km

depth ~ 2500 m

Site ANTARES
42° 50' N, 6° 10' E

2500 m under s.l.
The telescope: full configuration since 2008

- 12 lines of 75 PMTs
- 1 line for Earth and Marine sciences
- 25 storeys / line
- 3 PMTs / storey
- 885 PMTs

ALL-DATA-TO-SHORE:
computer farm @ the shore station: data filtering, processing and storage.

14.5 m
350 m
~70 m
40 km to shore

Submarine links
Neutrino astrophysics

Search for fluxes of high energy cosmic neutrinos

- Individual sources (point-like and extended sources)
- Diffuse flux (not identifiable single source)

Galactic sources: near objects
lower luminosity requirements
- Micro-quasars
- Supernova remnants
- Magnetars
- Galactic Centre and Galactic ridge

Extra-galactic sources:
most powerful accelerators in the Universe
- AGNs
- GRBs

ANTARES visible sky
ANTARES search for point-like sources of cosmic νs

9 years of ANTARES data – all neutrino flavours:
7629 track-like + 180 shower-like events
2007-2015 – Total livetime = 2423.6 d

arXiv:1706.01857
Full sky search

Search for an excess of signal events located anywhere in the ANTARES visible sky without any assumption about the source position \rightarrow ANTARES visible sky divided in $1^\circ \times 1^\circ$ (r.a \times decl.) boxes. \rightarrow Maximum Likelihood analysis searching for clusters

decl. $\delta = 23.50$, r.a. $\alpha = 343.80$ = most significant cluster ($\approx 1.9 \sigma$)

arXiv:1706.01857
equatorial coordinates
Candidate list search

Red: cascades
Blue: tracks

IC HESE – 13 track-like events

candidate sources – 106 known astrophysical sources

No significant excess found so far

arXiv:1706.01857
Sensitivity and upper limits
Diffuse flux search

vs from unresolved sources, GZK, Z-jets...

Search for excess of HE events over the expected atmospheric background (softer spectrum ~ 3.7)
Diffuse flux search

vs from unresolved sources, GZK, Z-jets...

Search for excess of HE events over the expected atmospheric background
(softer spectrum ~ 3.7)
Diffuse flux

TRACKS
Data: 2007-2015 (2450 livedays)

Above E_{cut}: Bkg: 13.5 ± 4 evts
IC-like signal: 3 evts
Observed: **19 evts**

SHOWERS
Data: 2007-2015 (2450 livedays)

Above E_{cut}: Bkg: 10.5± 4 evts
IC-like signal: 4 evts
Observed: **14 evts**

Reliable energy estimate required
Upper limit at 90% C.L. 68% confidence interval for the combined track and shower analysis (systematics included)
The Galactic ridge - 1

- \(\nu \)'s and \(\gamma \)-rays produced by CR propagation

\[
p_{\text{CR}} + p_{\text{ISM}} \rightarrow \pi^0 \pi^+ \pi^- \ldots
\]

\[
\pi^0 \rightarrow \gamma \gamma \text{ (EM cascade)}
\]

\[
\pi^\pm \rightarrow \nu_\mu \nu_e \ldots
\]

- Search for \(\nu_\mu \), data 2007-2013
- Search region \(|l|<30^\circ, |b|<4^\circ\)
- Cuts optimized for \(\Gamma=2.4-2.5 \)
- Counts in the signal/off zones
- No excess in the HE neutrinos
- 90% c.l. upper limits: \(3<E_\nu<300 \text{ TeV}\)

The Galactic ridge – 2 → new analysis

Tracks + showers 2007-2015 → LT = 2423.6 d
Maximum Likelihood analysis

KRAγ - radially dependent model for CR transport in the Galaxy: δ(R)~1/R
arxiv:1702.01124

Enhanced production of γs and νs

Probability density function of the signal for shower and track-like events (5PeV cutoff model)
Background extracted from data

arXiv:1705.00497
Multimessenger program

Intense effort in working with other collaborations

- better understanding of the sources and of the physics mechanisms
- increase detector sensitivity (uncorrelated backgrounds)

Multi wavelength follow-up of neutrinos

<table>
<thead>
<tr>
<th>Radio</th>
<th>Visible</th>
<th>X-ray</th>
<th>GeV-ray</th>
<th>TeV-ray</th>
<th>GW</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWA</td>
<td>TAROT</td>
<td>Swift</td>
<td>Fermi-LAT</td>
<td>HESS</td>
<td>Ligo</td>
<td>IC</td>
</tr>
<tr>
<td>ZADKO</td>
<td></td>
<td></td>
<td></td>
<td>HAWC</td>
<td>Virgo</td>
<td></td>
</tr>
<tr>
<td>MASTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alerts

- Radio: MWA 12/yr, ZADKO 30/yr, MASTER 6/yr
- Visible: TAROT 30/yr
- X-ray: Swift 6/yr
- GeV-ray: Fermi-LAT (Offline)
- TeV-ray: HESS (1-10/yr), HAWC (Offline)
- GW: Ligo
- ν: IC, Virgo
Real-time (follow-up of the selected neutrino events):

- optical telescopes [TAROT, ROTSE, ZADKO, MASTER]
- X-ray telescope [Swift/XRT]
- GeV-TeV γ-ray telescopes [HESS, HAWC]
- radio telescope [MWA]
- Online search of fast transient sources [GCN, Parkes]

Multi-messenger correlation with:

- Gravitational wave [Virgo/Ligo]
- UHE events [Auger]

Time-dependent searches:

- GRB [Swift, Fermi, IPN]
- Micro-quasar and X-ray binaries [Fermi/LAT, Swift, RXTE]
- Gamma-ray binaries [Fermi/LAT, IACT]
- Blazars [Fermi/LAT, IACT, TANAMI…]
- Crab [Fermi/LAT]
- Fast radio burst [radio telescopes]
Real-time follow-up (TAToO)

- M. Ageron et al., The ANTARES telescope neutrino alert system, APP 35 (2012) 530 (method)
- Adrián-Martínez et al., Optical and X-ray early follow-up of ANTARES neutrino alerts, JCAP02(2016)062

ANTARES trigger
- single HE ν (~10 TeV)
- single ν correlated to local galaxies for SNe (~1 TeV)
- doublet of ν’s

Performances:
- Time to send an alert: ~ 5 s
- Median angular resolution: 0.3° - 0.4°
- First image of the follow-up: <20 s
- Dedicated optical image analysis
GW observation neutrino follow-up
joint analyses ANTARES/IceCube/LigoSC/Virgo

GW150914

- No ANTARES events in ±500 s around event time
- ANTARES limits dominates for $E_{\nu} < 100$ TeV
- Size of GW150914: 590 deg2
- ANTARES resolution: <0.5 deg2
- < 10% GW total energy radiated in ν

GW151226

LVT151012

ν_μ associated with GeV and TeV γ-ray flaring blazars and X-ray binaries

- Search for ν’s (2008-2012) correlated with high activity state
- **Blazars** monitored by FERMI-LAT and IACTs (JCAP 1512 (2015), 014)
- 40 blazars + 33 X-ray binaries during flares observed by Swift-BAT, RXTE-ASM and MAXI. Transition states from telegram alerts
- No significant excess
- Upper limits on ν fluence and model parameters constrain
DM $\rightarrow \nu$
Dark Matter from the Sun the Earth and the Galactic Centre

- Gravitational trapping and accumulation of DM particles in the centre of astrophysical objects like the Sun, the Galactic centre and also the Earth
- DM annihilation would produce eventually a HE neutrino flux with no significant astrophysical backgrounds
- ν_μ spectrum \rightarrow WIMPSIM [Blennow, Edsjö, Ohlsson, arXiv:0709.3898]
- Bkg estimated from time scrambled data. No excess observed
The Galactic Center

\[X_{\text{WIMP}} \overline{X}_{\text{WIMP}} \rightarrow \nu \overline{\nu}, \ b\overline{b}, \ W^-W^+, \ \tau^-\tau^+, \ \mu^-\mu^+ \]

3 DM halo models in the Milky Way

effect on the thermally averaged cross section

good visibility of the GC
only muon like events considered
\[\rightarrow \text{angular resolution } <0.4^\circ \]

J-factor \(\rightarrow \rho^2_{\text{DM}} \) integrated over a line of sight at an angular separation \(\Psi \) from the center of the source, depends on the halo model

JCAP, 10 (2015) 068

5 annihilation channels
Dark Matter annihilation in the Earth and the Sun

data collected between 2007-2012
3 channels: $\tau^+ \tau^-, W^+ W^-, b\bar{b}$

Limits on the SI WIMP-nucleon scattering cross-section

Limits on the SD WIMP-nucleon scattering cross-section

Physics of the Dark Universe, 16 (2017) 41

Summary

• **ANTARES** → the largest underwater neutrino telescope
• Search for a neutrino flux from the Southern sky
• Huge *multimessenger* effort
 – EM radiation: radio (MWA), optical, X-ray, γ-rays (LAT, IACTs)
 – Gravitational Wave observatories and IceCube
• Important contribution to the indirect searches for *Dark Matter*
• competitive sensitivities and excellent angular resolution in both *track* and *cascade* events because of
 – OPTICAL PROPERTIES OF THE SEAWATER
 – LOCATION → Northern Hemisphere
 – DEPTH
• main limitation → reduced size

The future: **KM3NeT/ARCA**
(talk C. Distefano, on Sat morning)