Results from Borexino on solar and geo-neutrinos

(Cande Alone 72 - 72 -

On behalf of the BOREXINO collaboration

Laboratori Nazionali del Gran Sasso EPS – HEP 2017 - Venezia ¹

Solar Neutrino Physics

Solar neutrinos:

- Theoretical particle physics
- Nuclear physics
- Astrophysics
- Astronomy
- Experimental nuclear/particle physics

- Solar Neutrino problem can be considered solved
- Compare accurate observations with expectations of solar neutrinos (SSM): test models and understand something new.

Borexino is presently the only detector able to measure the solar neutrino interaction rate with neutrino threshold of ~ 150 keV and to reconstruct the energy spectrum of the events.

Located in *Hall C* Laboratori Nazionali del Gran Sasso (INFN)

Nuclear Reactions and Neutrinos

in (99% ⇔)	PP-I (99.76%)	$p + p \rightarrow D + \beta^+ + \mathbf{v}_e$ $p + D \rightarrow {}^{3}\text{He} + \gamma$ ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow \alpha + 2p$	Reaction $pp \rightarrow d e^+ \nu$ $pe^- p \rightarrow d \nu$ ³ He $p \rightarrow ^4$ He $e^+ \nu$ ⁷ Be $e^- \rightarrow ^7$ Li $\nu + (\gamma)$ ⁸ B $\rightarrow ^8$ Be* $e^+ \nu$ ¹³ N $\rightarrow ^{13}$ C $e^+ \nu$ ¹⁵ O $\rightarrow ^{15}$ N $e^+ \nu$ ¹⁵ O $\rightarrow ^{15}$ N $e^+ \nu$ ¹⁷ F $\rightarrow ^{17}$ O $e^+ \nu$ $17_{\rm F} \rightarrow ^{17}$ O $e^+ \nu$	Abbr.	Flux (cm ⁻² s ⁻¹) $5.97(1 \pm 0.006) \times 10^{10}$ $1.41(1 \pm 0.011) \times 10^{8}$	
	pep (0.24%)	$p + e^+ + p \rightarrow D + v_e$		hep $r^{7}Be$	$\begin{array}{l} 1.41(1 \pm 0.011) \times 10 \\ 7.90(1 \pm 0.15) \times 10^{3} \\ 5.07(1 \pm 0.06) \times 10^{9} \end{array}$	
	PP-II (99.88%)	³ He + ⁴ He \rightarrow ⁷ Be + γ ⁷ Be + e- \rightarrow ⁷ Li + ν_{e} ⁷ Li + p \rightarrow 2 α		⁸ B ¹³ N ¹⁵ O 17 _E	$5.94(1 \pm 0.11) \times 10^{6}$ $2.88(1 \pm 0.15) \times 10^{8}$ $2.15(1^{+0.17}_{-0.16}) \times 10^{8}$ $5.82(1^{+0.19}_{-0.19}) \times 10^{6}$	
cha	C PP-III (0.12%) 8B - 8 8B - 8	${}^{7}Be + p \rightarrow {}^{8}B + \gamma$ ${}^{8}B \rightarrow {}^{8}Be^{*} + \beta^{+} + \nu_{e}$ ${}^{8}Be^{*} \rightarrow 2\alpha$		$\frac{1}{8.02(1-0.17) \times 10}$ $\frac{1}{8.02(1-0.17) \times 10}$ $\frac{1}{8.02}$		
<u>с</u>	hep (PP-IV)	³ He + p $\rightarrow \alpha$ + β^+ + \mathbf{v}_{e}		⁷ Be→ ±5.8% [PDG2016]		
	CNO-I (dominant)	$\label{eq:constraint} \begin{array}{l} {}^{12}\textbf{C} + p \ \rightarrow \ {}^{13}\textbf{N} + \gamma \\ {}^{13}\textbf{N} \ \rightarrow \ {}^{13}\textbf{C} + \ \beta^+ + \ \textbf{v}_e \\ {}^{13}\textbf{C} + p \ \rightarrow \ {}^{14}\textbf{N} + \gamma \\ {}^{14}\textbf{N} + p \ \rightarrow \ {}^{15}\textbf{O} + \gamma \\ {}^{15}\textbf{O} + \ {}^{15}\textbf{N} + \ \beta^+ + \ \textbf{v}_e \\ {}^{15}\textbf{N} + p \ \rightarrow \ {}^{12}\textbf{C} + \alpha \end{array}$	$\begin{array}{c} 10^{8} & 13^{N} \\ \hline 10^{8} & 14^{N} \\ \hline 10^{7} & 10^{7} \\ \hline 10^{9} & 10^{7} \\ \hline 10^{8} & 10^{8} \\ \hline 10^{4} & 10^{3} \\ \hline 10^{4} & 10^{4} \\ \hline$		^b B→±11.3% hep→±15.5%	
	CNO cy	/cle (1% ☆)	0.1	1.0 Neutrino Ei	10.0 nergy in MeV	

Borexino Results

Solar physics results:

- First measurement of the interaction rate of the ⁷Be (862 keV) neutrinos (5% accuracy) [Phys.Rev.Lett. 107 (2011) 141302]
- Exclusion of any significant day-night asymmetry of the ⁷Be solar neutrino flux [Phys.Lett. B707 (2012) 22-26]
- Annual modulation observation of the ⁷Be neutrino flux (recently updated) [Astropart.Phys. 92 (2017) 21-29]
- First direct observation of the mono-energetic 1440 keV pep solar neutrinos [Phys.Rev.Lett. 108 (2012) 051302]
- Set of the strongest upper limit of the CNO solar neutrinos flux [ibid.]
- Measure of the ⁸B solar neutrinos with an energy threshold of 3 MeV [Phys.Rev. D82 (2010) 033006]
- First spectroscopical observation of pp neutrinos [Nature 512 (2014) no.7515, 383-386]

Other results:

- 5σ geo-netrinos detection
- Rare processess (recent): Charge conservation [Phys.Rev.Lett. 115 (2015) 231802], Low-energy neutrinos with GRB [Astropart.Phys. 86 (2017) 11-17] and GW [arXiv:1706.10176].

Timeline

The Signal

Comparison of major contaminants

[cpd/100t]	Phase-I	Phase-II
²¹⁰ Po	>2000	~50
²¹⁰ Bi	~40	x2 less
⁸⁵ Kr	~30	x(5-6) less

Phase-II

²³⁸U (Bi-Po 214) < 9.7 x 10 -19 g/g (95% CL)

²³²Th (Bi-Po 212) < 1.2 x 10 -18 g/g (95% CL)

⁴⁰K no evidence (TBD)

```
<sup>39</sup>Ar << <sup>85</sup>Kr
```

The Borexino Spectrum (Phase-I)

Spectral fit results 1

Spectral fit results 2

Energy TFC tagged

Fit Methods:

Analytical

- different energy estimators
- different response modelings

Monte Carlo

- detailed MC modeling tuned on calibrations (new MC recently published)

Multivariate approach (Maximal sensitivity)

- Energy TFC tagged
- Energy TFC complementary
- Radial Distribution
- Pulse shape likelihood

[Phys.Rev. D89 (2014) no.11, 112007]

Solar neutrinos with Borexino

Neutrino species	Interaction rate [cpd/100t]	Flux [cm ⁻² s ⁻¹]	References
⁷ Be (863 keV)	46.0 ± 1.5 +1.5 -1.6	$3.1 \pm 0.15 \times 10^9$	[Phys.Rev.Lett. 107 (2011) 141302]
pep (1442 keV) CNO	3.1 ± 0.6 ± 0.3 < 7.9 (95% CL)	1.6 ± 0.6 x 10 ⁸ <7.7 x 10 ⁸ (95% CL)	[Phys.Rev.Lett. 108 (2012) 051302]
⁸ B(> 3 MeV)	$0.22 \pm 0.04 \pm 0.01$	$2.4 \pm 0.4 \pm 0.1 \times 10^{6}$	[Phys.Rev. D82 (2010) 033006]
рр	$144 \pm 13 \pm 10$	$6.6 \pm 0.7 \times 10^{10}$	[Nature 512 (2014) no.7515, 383-386]

P_{ee} survival probability in the MSW-LMA scenario with Borexino data only!

⁷Be seasonal modulation

Earth orbit eccentricity = 0.0167 Corresponds to ~3.4% modulation amplitude in the solar neutrino flux

$$\Phi_{\nu} \simeq \frac{1}{\bar{r}^2} [1 + 2\epsilon \cos(2\pi (t - t_0)/T)]$$

Event Selection:

Wide range including mostly the ⁷Be shoulder.

r(θ)

²¹⁰Po alphas tagged and removed with a high efficiency PSD based on *Multi-Layer Perceptron* (MLP) trained with ²¹⁴Bi-Po coincidences from ²²²Rn during the water extraction

Recent Results

I) Sinusoidal fit

2) Lomb-Scargle

The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99% C.L.

	Simulated Data	Data
T [year]	0.95 ± 0.02	0.96 ± 0.05
ε	0.0155 ± 0.0025	0.0168 ± 0.0031
$\phi [\mathrm{day}]$	-12 ± 11	14 ± 22

3) Empirical Mode Decomposition

Three methods, all in agreement!

(2017) 21-29]

92

Astropart.Phys.

Sensitivity to CNO: a challenge

Motivations:

- According to astrophisical models, CNO cycle is responsible of ~1% of the solar luminosity. Main mechanism of energy generation in massive stars.
- Its measurement will allows us to complete the SSM and stellar astrophysics.
- A solution for the solar metallicity problem. Relative species predicted by nuclear physics, absolute abundance still unknown.

Experimental issues:

- Low rate expected in Borexino: ~5 cpd/100t (HZ)
 ~3 cpd/100t (LZ)
- Very low and almost degenerate with ²¹⁰Bi beta spectrum
- Same region as **pep** (but correlation **pp-pep** can help!)

²¹⁰Bi independent constraint

$$\begin{array}{c} {}^{210}\text{Pb} \\ \textbf{(}\beta^{-}, \tau = 32y) \end{array} \xrightarrow{210} {}^{210}\text{Bi} \\ \textbf{(}\beta^{-}, \tau = 7d \end{array} \xrightarrow{210} {}^{210}\text{Po} \\ \textbf{(}\alpha, \tau = 200d \end{matrix})$$

Assuming the secular equilibrium the ²¹⁰Bi rate can be determined by the ²¹⁰Po rate [F. Villante et al. Phys.Lett. B701 (2011) 336-341]:

Example:

- Total rate A(t)
 Unsupported ²¹⁰Po term A₀
 - -²¹⁰Bi-supported²¹⁰Po term B₀

$$A(t) = (A_0 - B_0)e^{-t/\tau_{Po}} + B_0$$

- Contaminants must be homogeneous.
- A stable temperature vertical gradient is required to prevent motions of the contaminants in the FV through convection. Pure diffusive regime cannot bring contaminants (²¹⁰Po) towards the center before it decays

The thermal insulation and temperature active control system

Before thermal insulation

After thermal insulation

Since the end of 2015 the detector is surrounded by a thick layer of rock wool
The dome of Borexino is equipped with a water coil able to provide heat for compensating the heat sink from the bottom (rock at ~6°C)

Temperature evolutions

Coils of the TACS system before the insulation

Background Evolutions

Borexino and geo-neutrinos

Geo-neutrinos are emitted by long-lived radioactive decays in the Earth.

Why important?

- Energy for plate tectonics
- Mantle composizion
- contribution to $W_{\mbox{\tiny Earth}}$
- Th/U ratio (solar system formation)
- Geo-reactor (?)

Signal in Borexino: inverse beta

Expected spectrum: geo-nu + reactors

Energy of prompt positron event [MeV]

Geo-neutrino results

Present and near future

- New Monte Carlo (emission, propagation, electronics): energy response and time distribution <1% (calibrations) in between 100 keV and several MeV [arXiv:1704.02291]. (Global fit)
- Improvement of the analytical methods: new response modelings. (Global fit).
- New fitting tools and fitting strategies.
- Phase-II: ~5 year of high quality and low background. Future program:
 - **Step-I:** Precision measurement of ⁷Be, pep, pp and CNO limit **(coming soon!)**
 - **Step-II:** New release of ⁸B at low threshold (>3MeV)
 - **Step-III:** Fighting for Improvement of the CNO sensitivity.
- Update of geo-neutrinos
- Other measurement: neutrino magnetic moment update
- **SOX** project (2018) Short Baseline Oscillation (in this conference)

