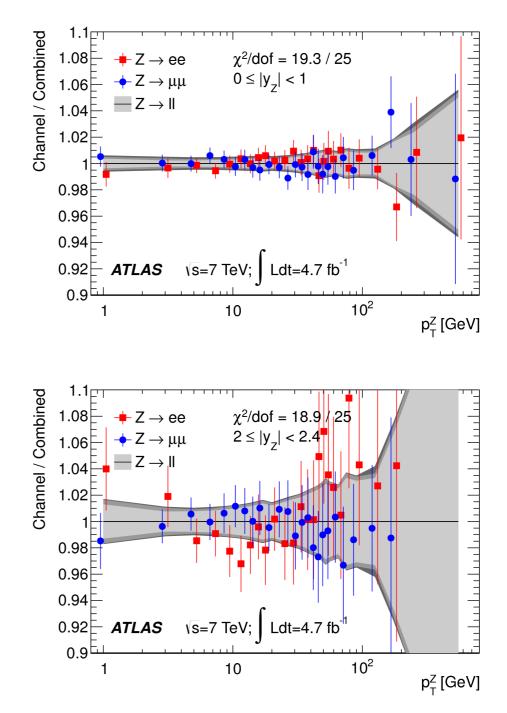
The impact of Z transverse momentum data of PDF determinations

Alberto Guffanti Università degli Studi di Torino & INFN Torino

> Mostly based on: R. Boughezal, AG, F. Petriello & M. Ubiali, arXiv:1705.00343

> > EPS-HEP2017 Venezia (IT), 07.07.2017

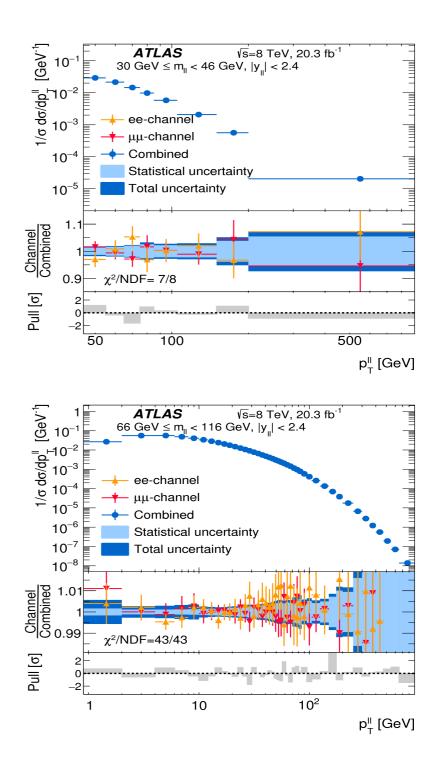
Outline


- Z transverse momentum measurements at the LHC
- Theoretical computation & Fitting framework
- DIS + Zpt fits
- Global fits
- Recent developments
- Outlook

Zpt measurements at the LHC - ATLAS 7 TeV

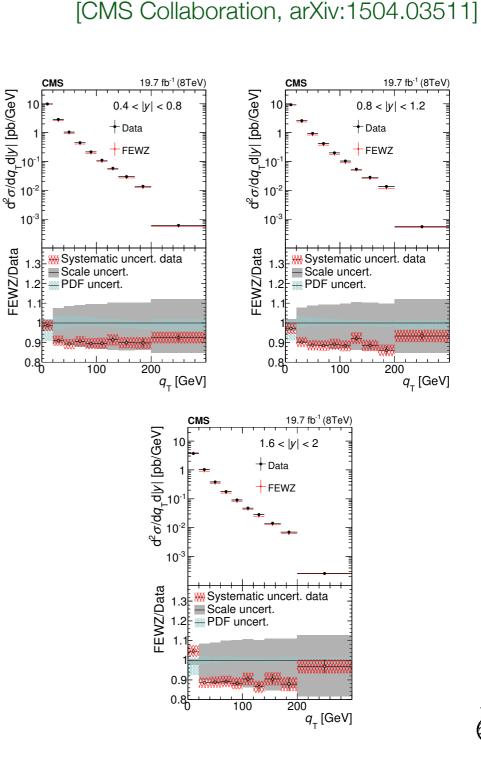
- Based on the **7 TeV dataset** (4.7 fb⁻¹)
- Z transverse momentum distribution, normalised to the fiducial crosssection.
- Three rapidity bins in the **Z peak** region:
 - 0.0 < |yZ| < 1.0
 1.0 < |yZ| < 2.0
 2.0 < |yZ| < 2.4
- Luminosity uncertainty cancels, dominated by correlated systematic uncertainties (~1%) up to pt~150 GeV (not true for the last rapidity bin)
- 64(39) data points (p_T > 30 GeV)

[ATLAS Collaboration, arXiv:1406.3360]



Zpt measurements at the LHC - ATLAS 8 TeV

- Based on the 8 TeV dataset (20.3 fb⁻¹)
- Both absolute and normalised data available with full correlation information
- Six lepton pair invariant mass bins:
 - * $12 < |m_{II}| < 20 \text{ GeV}, 0 < |y_Z| < 2.4$ $20 < |m_{II}| < 30 \text{ GeV}, 0 < |y_Z| < 2.4$ $30 < |m_{II}| < 46 \text{ GeV}, 0 < |y_Z| < 2.4$ $46 < |m_{II}| < 66 \text{ GeV}, 0 < |y_Z| < 2.4$
 - * $66 < |m_{II}| < 116 \text{ GeV}$, 6 rapidity bins
 - * $16 < |m_{II}| < 150 \text{ GeV}, 0 < |y_Z| < 2.4$
- Dominated by correlated systematic uncertainties (~1%) up to p_T~200 GeV
- 184(94) data points (p_T > 30 GeV)

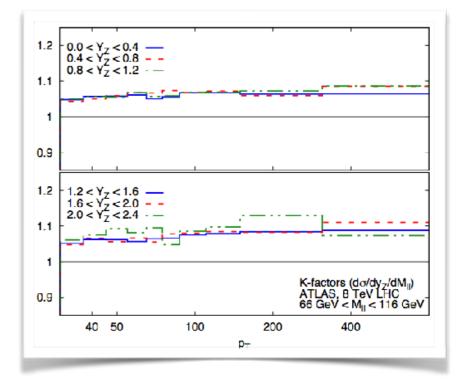

[ATLAS Collaboration, arXiv:1512.02192]

Zpt measurements at the LHC - CMS 8 TeV

- Based on the 8 TeV dataset (19.7 fb⁻¹)
- Both absolute and normalised data available with full correlation information
- Five rapidity bins in the Z peak region:
 - * $0.0 < |y_Z| < 0.4$ $0.4 < |y_Z| < 0.8$ $0.8 < |y_Z| < 1.2$ $1.2 < |y_Z| < 1.6$ $1.6 < |y_Z| < 2.0$
- Dominated by correlated systematic uncertainties (~1%) up to p_T~200 GeV
- **50(28)** data points (p_T > 30 GeV)

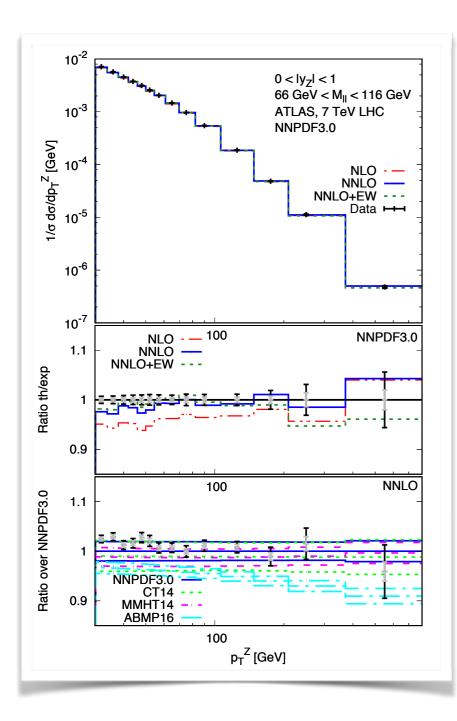
Zpt@NNLO - Theoretical computation

• NNLO predictions for Z transverse momentum available thanks to the recent computation of Z+jet at NNLO [Boughezal et al., arXiv:1512.01291


Gehrmann-De Ridder et al, arXiv:1605.04295 Gehrmann-De Ridder et al., arXiv1610.01843]

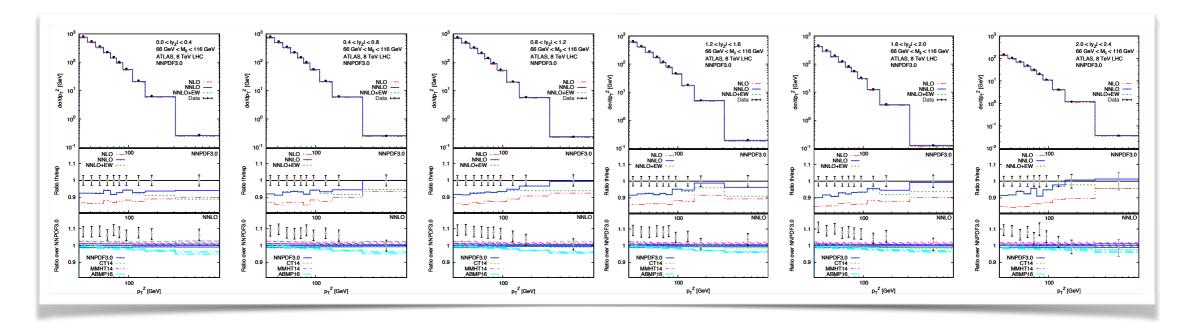
Renormalisation and factorisation scales set to

$$\mu_R = \mu_F = \sqrt{(p_T^Z)^2 + M_{ll}^2}$$


- NNLO/NLO QCD K factor as large as 5-10%, depending on kinematic region (m_{II}, p_T, y_Z)
- EW corrections become important (~1%) for large transverse momentum (p_T>150 GeV)

[Denner et al., arXiv:1103.0914 Hollik et al., arXiv:1504.07574 Kallweit et al., arXiv:1511.08692]

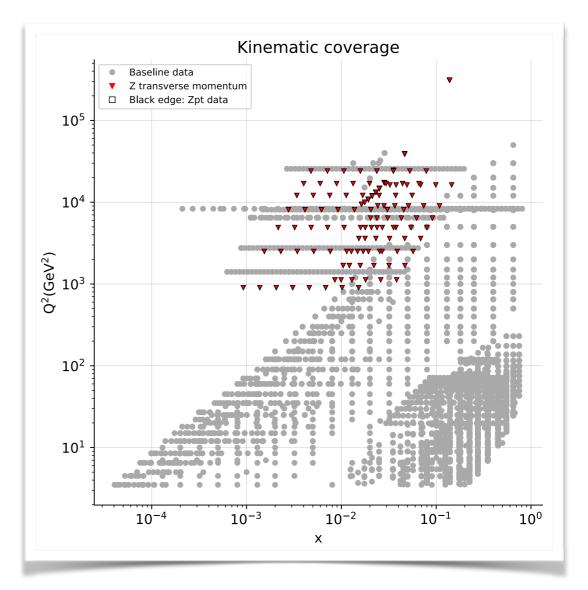
Data/Theory comparison - ATLAS 7 TeV



Bin	Order	$N_{\rm dat}$	$\chi^2_{\rm d.o.f.}$ (NN30)	$\chi^2_{\rm d.o.f.}(m CT14)$	$\chi^2_{\rm d.o.f.}$ (MMHT14)	$\chi^2_{\rm d.o.f.}$ (ABMP16)
$0.0 < y_Z < 1.0$	NLO	14	10	21	9.2	n.a.
	NNLO	14	2.2	3.8	4.3	11
	NNLO+EW	14	1.3	2.3	2.6	9.1
$1.0 < y_Z < 2.0$	NLO	14	13	18	12	n.a.
	NNLO	14	5.6	8.2	9.3	15.
	NNLO+EW	14	3.9	6.0	6.8	12.
$2.0 < y_Z < 2.4$	NLO	14	7.0	7.1	6.0	n.a.
	NNLO	14	7.0	8.2	8.7	11.
	NNLO+EW	14	5.9	7.1	7.5	9.5
All bins	NLO	42	9.9	15	9.1	n.a.
	NNLO	42	4.9	6.7	7.4	13.
	NNLO+EW	42	3.7	5.2	5.6	12.

NNLO (and EW) corrections are crucial (and often not enough) to describe well data over the whole kinematic range

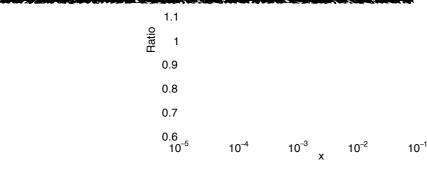
Data/Theory comparison - ATLAS 8 TeV

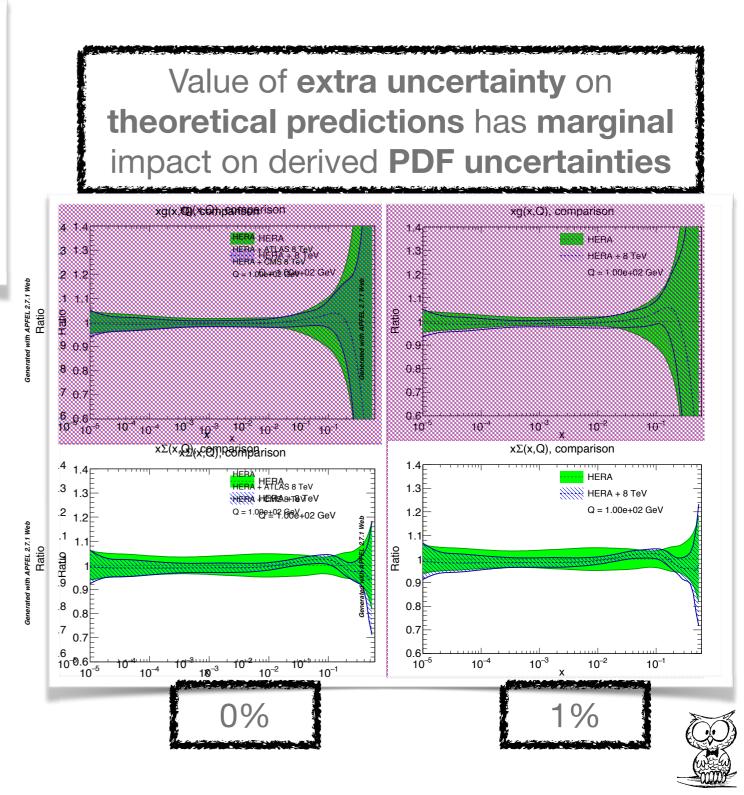

Bin	Order	$N_{\rm dat}$	$\chi^2_{\rm d.o.f.}$ (NN30)	$\chi^2_{\rm d.o.f.}$ (CT14)	$\chi^2_{\rm d.o.f.}$ (MMHT14)	$\chi^2_{\rm d.o.f.}$ (ABMP16)
$0.0 < y_Z < 0.4$	NLO	10	4.0	3.2	2.4	n.a.
C C	NNLO	10	2.7	2.7	2.6	2.7
	NNLO+EW	10	3.4	3.2	3.1	5.4
$0.4 < y_Z < 0.8$	NLO	10	5.6	4.6	3.8	n.a.
	NNLO	10	5.4	5.2	5.3	3.3
	NNLO+EW	10	4.0	3.9	3.7	3.8
$0.8 < y_Z < 1.2$	NLO	10	5.8	3.8	3.0	n.a.
	NNLO	10	4.7	4.0	4.3	2.1
	NNLO+EW	10	2.3	2.0	1.9	1.7
$1.2 < y_Z < 1.6$	NLO	10	4.5	3.2	2.5	n.a.
	NNLO	10	5.1	4.0	4.6	3.0
	NNLO+EW	10	3.3	2.6	2.7	2.5
$1.6 < y_Z < 2.0$	NLO	10	4.4	3.2	2.4	n.a.
	NNLO	10	5.4	4.3	5.0	3.7
	NNLO+EW	10	3.9	3.2	3.4	3.0
$2.0 < y_Z < 2.4$	NLO	10	4.1	3.2	2.4	n.a.
	NNLO	10	3.4	3.1	3.3	3.2
	NNLO+EW	10	2.6	2.3	2.4	2.5

Uncertainties are dominated by correlated systematics.

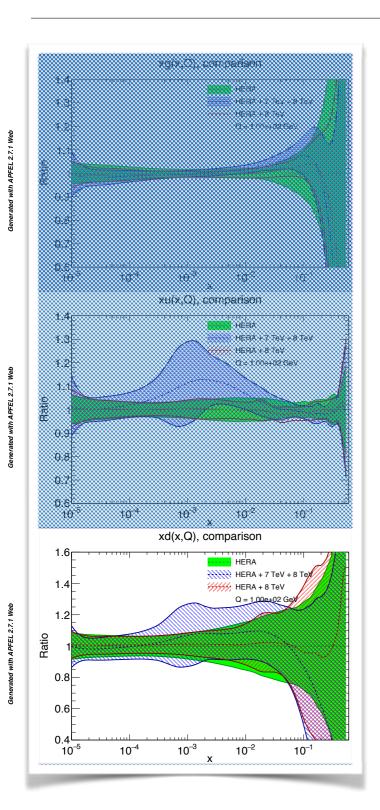
Fitting framework

- Based on the NNPDF3.0 PDF determination framework
 - Charm is perturbatively generated
 - Heavy quark masses values match the Higgs XS WG values
 - No inclusive jet data (NNLO QCD corrections not available)
- Additional statistical uncertainty added to account for numerical uncertainty (MC integration) in NNLO predictions
- **HERA+Z p**_T fits to perform detailed studies and decide on final setup
- Global fit with optimal settings

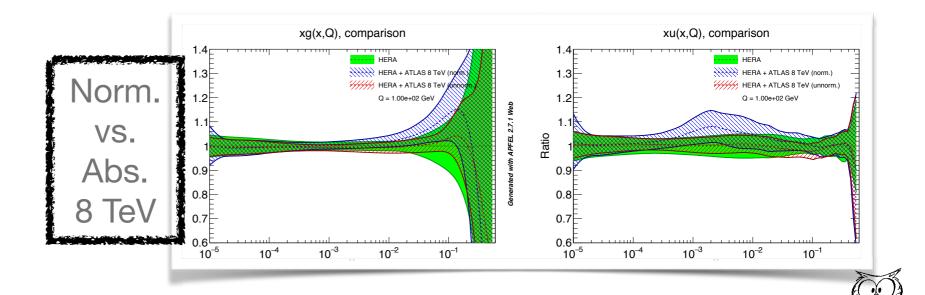



HERA + Z p_T 8 TeV data

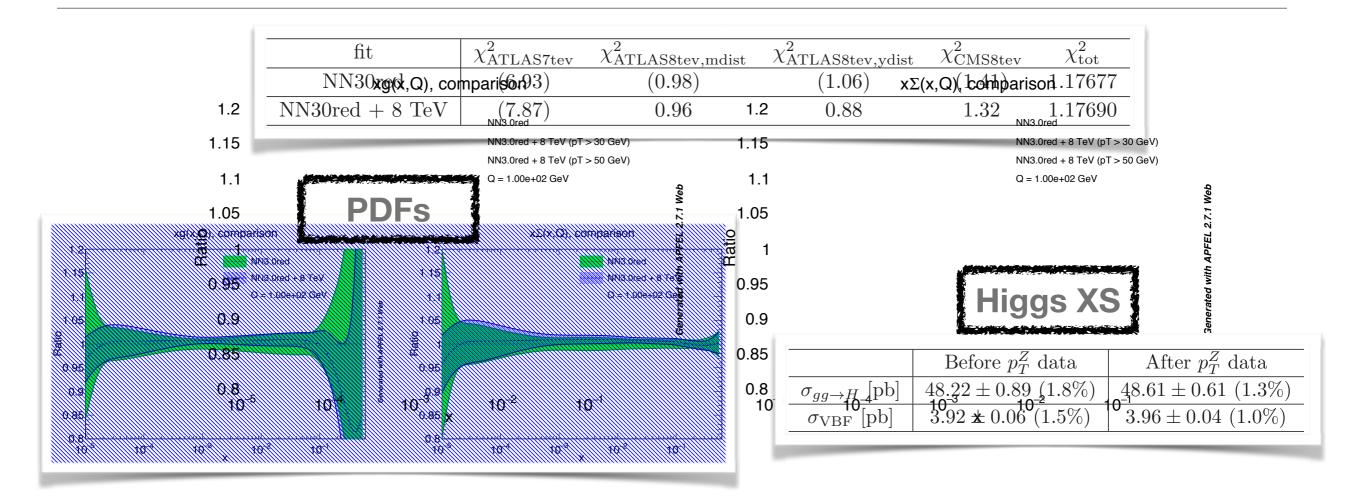
-	1	1				
fit id	extra Δ	$\chi^2_{ m ATLAS7tev}$	$\chi^2_{\text{ATLAS8tev,m}}$	$\chi^2_{ m ATLAS8tev,y}$	$\chi^2_{ m CMS8tev}$	$\chi^2_{ m tot}$
(a)	1%	(21.8)	(1.00)	(1.56)	(1.55)	1.168
(b)	1%	(19.6)	0.91	0.70	(1.61)	1.146
(c)	1%	(16.2)	(1.04)	(1.56)	1.21	1.176
(d)	1%	(18.0)	0.90	0.77	1.42	1.156
(a)	0.5%	(27.6)	(1.10)	(2.83)	(2.46)	1.168
(e)	0.5%	(23.0)	0.99	1.05	(3.01)	1.168
(f)	0.5%	(20.5)	(1.13)	(3.15)	1.91	1.198
(g)	0.5%	(21.4)	0.99	1.29	2.44	1.207
(a)	no	(30.6)	(1.15)	$(4.65)_{x,Q), q}$	comparison	1.168
(h)	no	(25.5)	1.02	1.66	(4.79)	1.193
(i)	no	(19.5)	(1.28)	(5.44)	È HERA 2HERA + ATL	asla 225
(j)	no	(24.5)	1.03	2.09	3HERA + CM Q = 1.00e+0	

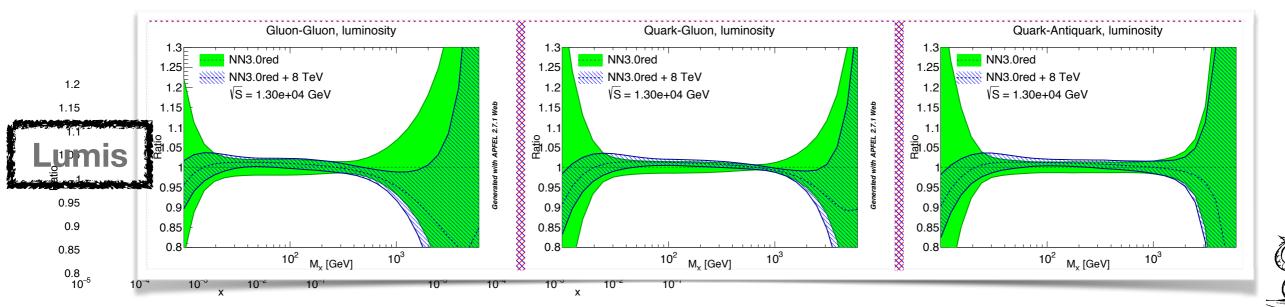

Inclusion of .8 TeV data in the fit improves description of these data, but does not improve description, of arison 7 TeV ones

TeV

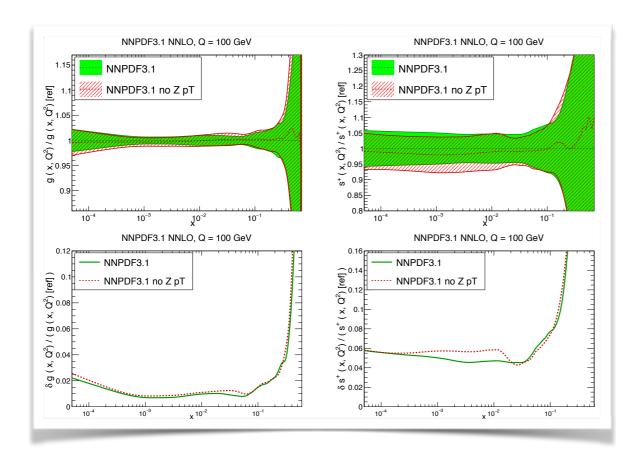


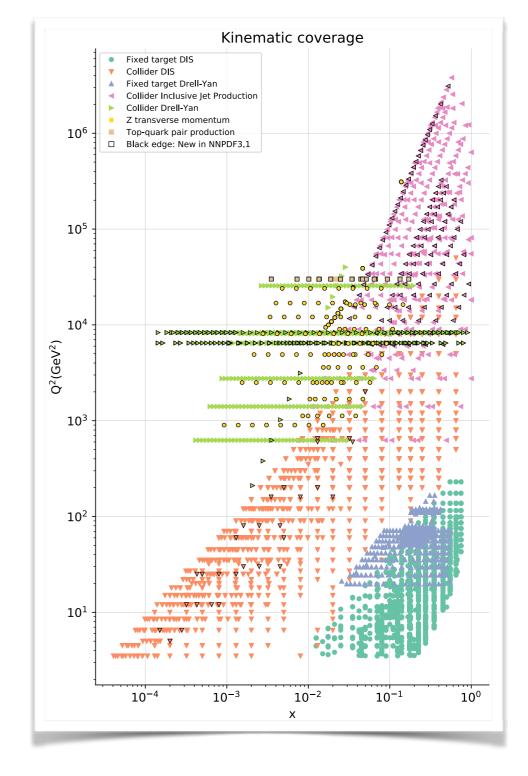
The case of $Z p_T 7$ TeV data




fit id	extra Δ	$\chi^2_{ m ATLAS7tev}$	$\chi^2_{ m ATLAS8tev,m}$	$\chi^2_{ m ATLAS8tev,y}$	$\chi^2_{\rm CMS8tev}$	$\chi^2_{ m to}$
(a)	1%	(21.8)	(1.00)	(1.56)	(1.55)	1.10
(k)	1%	1.39	(1.39)	(2.04)	(1.41)	1.1'
(l)	1%	1.64	1.05	1.17	1.27	$1.1'_{-}$
(a)	0.5%	(27.6)	(1.10)	(2.83)	(2.46)	1.16
(m)	0.5%	1.58	(1.54)	(3.36)	(2.11)	1.18
(n)	0.5%	2.13	1.18	1.98	2.21	1.25
(a)	no	(30.6)	(1.15)	(4.65)	(3.46)	1.16
(0)	no	1.74	(1.69)	(4.79)	(3.06)	1.18
(p)	no	2.35	1.24	2.81	3.19	1.30

Proper inclusion of **normalised data** with cuts only possible if corresponding **covariance matrix** is available

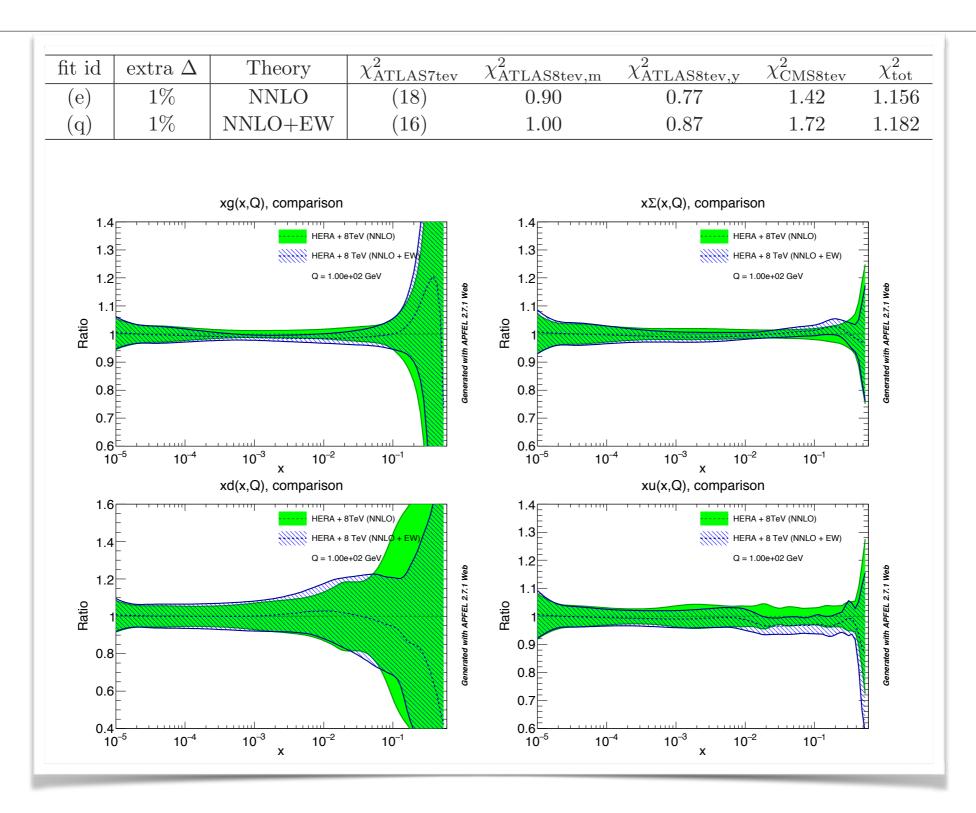

ZpT data in a global fit



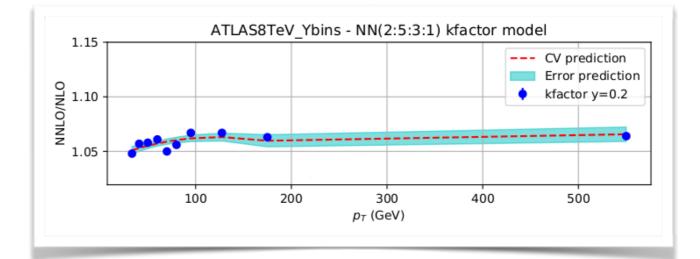
Recent developments: NNPDF3.1

- Extended dataset, in particular
 - Top differential distributions
 - More inclusive jet data
 - ATLAS W/Z, full 7 TeV dataset
- Charm PDF is fitted

Conclusions


- Z transverse momentum measurements provide valuable constraints on PDFs, in particular the gluon in the x range relevant for Higgs production in gluon fusion
- Recent computation of NNLO QCD corrections to Z+jet allow consistent inclusion of Z pT measurements in NNLO PDF determinations
- Recent ATLAS and CMS (8 TeV) measurements are in good agreement with other data included in global PDF fits
- Inclusion of normalised measurements with cuts can be problematic if corresponding covariance matrix is not publicly available
- **High precision** of measurements (extremely small **statistical uncertainties**) require us to think about **uncertainties on theoretical computations**
- Use of low-p_T data requires a lot of thinking about theoretical predictions and their accuracy

Extra Slides


Electroweak corrections

Uncertainties on theoretical predictions

- NNLO predictions for *Z*+*jet* are affected by **non-negligible** Monte Carlo integration **uncertainties**
- The size of uncertainties can be estimated by comparing the fluctuations to the results of an interpolation based on a smooth function (neural network)

data fits	Extra ⊿	χ ² ATLAS 7 TeV	χ^2 ATLAS 8 TeV (M)	χ^2 ATLAS 8 TeV (Y)	χ ² CMS 8 TeV (Y)
HERA + 8 TeV ZpT data fits	1%	(18)	0.90	0.77	1.42
HERA + 8	No	(25)	1.03	2.09	3.59

Studied the impact of introducing an uncertainty on theoretical predictions of 0%, 0.5% and 1%

