New Results from RENO

Hyunkwan Seo for the RENO Collaboration Seoul National University

EPS Conference on High Energy Physics Venice, Italy, 5-12 July 2017

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(8 institutions and 40 physicists)

- Chonnam National University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University YongGwang

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

RENO Data-taking Status

New Results from RENO

- Observation of energy dependent disappearance o f reactor neutrinos to measure Δm_{ee}² and θ₁₃ using 1500 live days of data (Aug. 2011 ~ Sep. 2015)
- Observation of an excess at ~5 MeV in reactor neu trino spectrum using 1500 days of data

 Measurement of absolute reactor neutrino flux usin g 1500 days

Reduction of background rates & uncertainties

Allows precise measurements of $sin^2 2\theta_{13}$ and Δm^2_{ee}

- Accidentals : Additional cuts and improved flashing-PMT removal algorithms
- Cosmogenic ⁹Li / ⁸He : Optimized muon veto criteria
- ²⁵²Cf contamination : Improved multiple-neutron removal algorithms

Measured Spectra of IBD Prompt Signal

Correlation of 5 MeV Excess with Reactor Power

Correlation of 5 MeV excess with ²³⁵U isotope fraction

²³⁵U fraction corresponds to freshness of reactor fuel

Measurement of Absolute Reactor Neutrino Flux

Data / Prediction

Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos

10

Results from Spectral Fit

Energy-dependent disappearance of reactor antineutrinos Preliminary

11

Allowed regions in $|\Delta m_{ee}^2|$ and $\sin^2 2\theta_{13}$

Observed L/E Dependent Oscillation

13

More precise measurement of θ_{13} and $|\Delta m_{ee}^2|$

PRL 116, 211801 (2016), Submitted to PRD (arXiv:1610.04326)

500 days	Mean	Stat.	Sys.	Precision
$sin^2 2\theta_{13}$	0.082	+0.009 -0.009	+0.006 -0.006	12 %
 ∆m_{ee}² (x10 ⁻³ eV²)	2.62	+0.21 -0.23	+0.12 -0.13	10 %

New results (preliminary)

1500 days	Mean	Stat.	Sys.	Precision	
$sin^2 2\theta_{13}$	0.086	+0.006 -0.006	+0.005 -0.005	9 %	
 ∆m_{ee}² (x10 ⁻³ eV²)	2.61	+0.15 -0.16	+0.09 -0.09	7 %	

Systematic errors are reduced due to background reduction and larger statistics of control samples

RENO : Plan and Prospects

Plan for RE	NO data tak						
2017	2018	2	19 20		0	2021	
RENO data will be taken for 2 more years from now and it will take 3 additional years for the analysis. $\sin^2 2\theta_{13}$ and $ \Delta m_{ee}^2 $ will approach to ~6% precision (our design goal).							
	500 days Measured		1500 c Meası (prelimi	ured	~3500 days Expected		
sin²2θ ₁₃	12 %		9 %	6	6 -	~ 7 %	
∆m _{ee} ²	10 %		7 %	6	4 -	~ 5 %	

Summary

- More precise measurements of θ_{13} and Δm_{ee}^2 energy dependent disappearance of reactor neutrinos

(Preliminary) $\frac{\sin^2 2\theta_{13} = 0.086 \pm 0.006(\text{stat.}) \pm 0.005(\text{syst.}) \pm 0.008 \text{ (9\%)}}{\Delta m_{ee}^2} = 2.61^{+0.15}_{-0.16}(\text{stat.})^{+0.09}_{-0.09}(\text{syst.}) (\times 10^{-3} \text{eV}^2) \pm 0.18 \text{ (7\%)}}$

- (Preliminary)
 Measured absolute reactor neutrino flux : R= 0.946±0.021
- Observed an excess at 5 MeV in reactor neutrino spectrum
- $\sin^2(2\theta_{13})$ and Δm_{ee}^2 to 6% accuracy after 2 more years data taking
- Additional 2~3 years of data taking under consideration to improve Δm_{ee}^2 accuracy

Thanks for your attention!

RENO Detector

354 ID 10" PMTs67 OD 10" PMTs

- Target : 16.5 ton Gd-LS (R=1.4m, H=3.2m)
- Gamma Catcher : 30 ton LS (R=2.0m, H=4.4m)
- Buffer : 65 ton mineral oil (R=2.7m, H=5.8m)
- Veto : 350 ton water (R=4.2m, H=8.8m)

Detection of Reactor Antineutrinos

Coincidence of prompt and delayed signals

Delayed Signals from Neutron Capture by Gd

Correlation of 5 MeV Excess with Reactor Power

Far/Near Shape Analysis for $|\Delta m_{ee}^2|$

n-H IBD Analysis

1. Independent measurement of θ_{13} value. 2. Consistency and systematic check on reactor neutrinos.

(Work in progress) 400 days of data before ²⁵²Cf contamination $\sin^2 2\theta_{13} = 0.097 \pm 0.013 (\text{stat.}) \pm 0.015 (\text{syst.})$

Light Sterile Neutrino Search Results

full curves assumes $\sin^2 2\theta_{14} = 0.1$