Higgs effective $H l_{i} l_{j}$ vertex from heavy ν_{R} and applications to LFV phenomenology

María José Herrero

IFT-UAM/CSIC - Instituto de Física Teórica and Dpto. de Física Teórica, Universidad Autónoma de Madrid

```
maria.herrero@uam.es
```

$$
\text { July, } 8^{\text {th }} 2017
$$

DEMADRID

Work in collaboration based on:

E. Arganda., M. J. Herrero, X. Marcano, R. Morales and A. Szynkman, Phys. Rev. D 95 (2017) no.9, 095029 [arXiv:1612.09290 [hep-ph]].

Motivation

Neutral LFV observed in Neutrino Oscillations!!!

Neutrino Oscillations \Longrightarrow BSM for neutrino masses

$$
\mathrm{nLFV} \xrightarrow{\text { New Neutrino Physics }} \mathrm{cLFV}
$$

Low-scale seesaw models

- Accommodate light neutrino data.
- Large Yukawa couplings, $Y_{\nu}^{2} / 4 \pi \sim \mathcal{O}(1)$, with $M_{N} \sim \mathcal{O}(1 \mathrm{TeV})$.
- New rich phenomenology: cLFV $\left(l_{i} \rightarrow l_{j} \gamma, l_{i} \rightarrow 3 l_{j}, H \rightarrow l_{i} l_{j}, Z \rightarrow l_{i} l_{j} ..\right)$, heavy neutrinos reachable at LHC...

Mass insertion approximation (MIA) for loop-induced cLFV
Provides simple formulas valid for any low-scale seesaw model

Our Goal

Compute the effective LFV vertex $H l_{i} l_{j}$ from heavy ν_{R} in the loops

To be used in LFVHD and Higgs mediated LFV processes like:

Intense search program for cLFV

LFV transitions	LFV Present Bounds (90\%CL)	Future Sensitivities
$\operatorname{BR}(\mu \rightarrow e \gamma)$	$4.2 \times 10^{-13}(\mathrm{MEG} 2016)$	6×10^{-14} (MEG-II)
$\operatorname{BR}(\tau \rightarrow e \gamma)$	$3.3 \times 10^{-8}($ BABAR 2010)	10^{-9} (BELLE-II)
$\operatorname{BR}(\tau \rightarrow \mu \gamma)$	$4.4 \times 10^{-8}($ BABAR 2010)	10^{-9} (BELLE-II)
$\mathrm{BR}(\mu \rightarrow$ eee $)$	$1.0 \times 10^{-12}($ SINDRUM 1988)	$10^{-16} \mathrm{Mu} 3 \mathrm{E}$ (PSI)
$\operatorname{BR}(\tau \rightarrow e e e)$	2.7×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$\operatorname{BR}(\tau \rightarrow \mu \mu \mu)$	2.1×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$\operatorname{BR}(\tau \rightarrow \mu \eta)$	2.3×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$\mathrm{CR}(\mu-e, \mathrm{Au})$	7.0×10^{-13} (SINDRUM II 2006)	
$\mathrm{CR}(\mu-e, \mathrm{Ti})$	4.3×10^{-12} (SINDRUM II 2004)	10^{-18} PRISM (J-PARC)
$\mathrm{CR}(\mu-e, \mathrm{Al})$		3.1×10^{-15} COMET-I (J-PARC)
		2.6×10^{-17} COMET-II (J-PARC)
		$2.5 \times 10^{-17} \mathrm{Mu} 2 \mathrm{E}$ (Fermilab)

Bounds on	LEP(95\%CL)	ATLAS ${ }^{\text {a }}$ \% CL)	CMS(95\%CL)
$\operatorname{BR}(Z \rightarrow \mu e)$	1.7×10^{-6}	7.5×10^{-7} PRD90(2014)072010	
$\operatorname{BR}(Z \rightarrow \tau e)$	9.8×10^{-6}		
$\operatorname{BR}(Z \rightarrow \tau \mu)$	1.2×10^{-5}	$1.69 \times 10^{-5} \mathrm{EPJC} 77(2017) 70$	
$\operatorname{BR}(H \rightarrow \mu e)$	-		$3.5 \times 10^{-4} \mathrm{PLB} 763(2016) 472$
$\operatorname{BR}(H \rightarrow \tau e)$	-	$1.04 \times 10^{-2} \mathrm{EPJC} 77(2017) 70$	$6.1 \times 10^{-3} \mathrm{CMS}-\mathrm{PAS}-\mathrm{HIG}-17-001$
$\operatorname{BR}(H \rightarrow \tau \mu)$	-	$1.43 \times 10^{-2} \mathrm{EPJC} 77(2017) 70$	$2.5 \times 10^{-3} \mathrm{CMS}-\mathrm{PAS}-\mathrm{HIG}-17-001$

CMS found 2.4σ excess: $\quad \operatorname{BR}(H \rightarrow \tau \mu)=0.84_{-0.37}^{+0.39 \%}$ (95% C.L.) [PLB749(2015)337] ATLAS found 1.3σ excess: $\mathrm{BR}(H \rightarrow \tau \mu)=0.77 \pm 0.62 \%(95 \%$ C.L. $) \quad$ [arXiv:1508.03372]

Focus on LFV Higgs(-mediated) processes induced by massive neutrinos

Type-I seesaw model

- Neutrino oscillations \Longrightarrow Non-zero Neutrino masses m_{ν}
- Add ν_{R} to the $\mathrm{SM} \Longrightarrow$ Dirac mass: $m_{D}=v Y_{\nu}$
- ν_{R} is a SM singlet \Longrightarrow Majorana mass: M

$$
\begin{aligned}
M_{\mathrm{type}-\mathrm{I}} & =\left(\begin{array}{cc}
0 & m_{D} \\
m_{D}^{T} & M
\end{array}\right) \\
m_{\nu} & \sim \frac{m_{D}^{2}}{M}
\end{aligned}
$$

Low $M \sim 1 \mathrm{TeV} \Longrightarrow$ small $\left.Y_{\nu} \ll 1\right\}$ Suppressed Large coupling $Y_{\nu} \sim 1 \Longrightarrow$ heavy $\left.M \sim 10^{14} \mathrm{GeV}\right\}$ Pheno

Low-scale seesaw models

- Use symmetries to lower M yet keeping the coupling Y_{ν} large.
- Approximate Lepton Number conservation: $U(1)_{L}$
- Smallness of neutrino masses \Longleftrightarrow small violation of $U(1)_{L}$

μ_{X} small scale $\not \perp$

$m_{\nu} \propto \mu_{X}$

Decouple M and Y_{ν} from m_{ν} :
Low heavy masses $M \sim 1 \mathrm{TeV}\}$ Enhanced
Large coupling $\left.Y_{\nu} \sim 1\right\}$ Pheno

The inverse seesaw model

SM extended with 3 pairs of fermionic singlets: $\nu_{R i}(L=+1) \& X_{j}(L=-1)$

$$
\mathcal{L}_{\mathrm{ISS}}=-Y_{\nu}^{i j} \overline{L_{i}} \tilde{H} \nu_{R_{j}}-M_{R}^{i j} \overline{\nu_{R_{i}}^{C}} X_{j}-\frac{1}{2} \mu_{X}^{i j} \overline{X_{i}^{C}} X_{j}+h . c . \quad i, j=1 . .3
$$

Neutrino mass matrix

$$
M_{\mathrm{ISS}}=\left(\begin{array}{ccc}
0 & m_{D} & 0 \\
m_{D}^{T} & 0 & M_{R} \\
0 & M_{R}^{T} & \mu_{X}
\end{array}\right) ; \quad U_{\nu}^{T} M_{\mathrm{ISS}} U_{\nu}=\operatorname{diag}\left(m_{n_{1}}, \ldots m_{n_{9}}\right)
$$

Use μ_{X} to accommodate low energy neutrino data. Arganda et al., PRD91(2015)1,015001

$$
\mu_{X}=M_{R}^{T} m_{D}^{-1} U_{\mathrm{PMNS}}^{*} m_{\nu} U_{\mathrm{PMNS}}^{\dagger} m_{D}^{T^{-1}} M_{R} \sim \frac{M_{R}^{2}}{m_{D}^{2}} m_{\nu}
$$

Working in the EW basis: Input Parameters

$M_{R} \longrightarrow$ Masses of the 6 heavy Majorana neutrinos (3 pseudo-Dirac pairs)
$Y_{\nu} \longrightarrow$ Yukawa interaction between $\nu_{L}-\nu_{R}-H$. Governs cLFV pheno.
$\mu_{X} \longrightarrow$ light neutrinos pheno. Irrelevant for cLFV.
Relative size: $\mu_{X} \ll m_{D}=v Y_{\nu} \ll M_{R}$
e.g. setting $m_{\nu} \sim 0.1 \mathrm{eV}, Y_{\nu} \sim 1 \longrightarrow 10^{-8,-6} \ll 10^{2} \ll 10^{3,4}$ (in GeV)

The heavy neutrinos of the ISS and cLFV

Hierarchical M_{R}

- 6 heavy N_{i} in 3 pseudo-Dirac pairs. Here one $M_{R}: m_{N_{i}} \sim M_{R}$ (degenerate)
- Mass basis involves $B_{l_{i} n_{j}}\left(\right.$ in $\left.W l_{i} n_{j}\right)$ and $C_{n_{i} n_{j}}$ (in $H n_{i} n_{j}$) all derived from U_{ν}. EW basis involves directly Y_{ν} and M_{R}.
- Here work with the EW basis: Previous studies of loop induced $H l_{i} l_{j}$ from heavy ISS neutrinos used the mass basis:
E. Arganda, M.J. Herrero, X. Marcano, C. Weiland, PRD91(2015)1,015001
- The MIA works in the EW basis: optimal for tracking cLFV induced from non-diagonal (in flavor) $\left(Y_{\nu}\right)_{i j}, i \neq j$.

Feynman rules and fat propagators for the MIA

Fat propagators: M_{R} appears effectively in the denominator

Easier tracking of ν_{R} decoupling behavior at large $M_{R} \gg v$

The MIA expansion for cLFV

Diagramatic calculation of the one-loop effective vertex $H l_{i} l_{j}$ in the MIA:
1.- Express $H\left(p_{1}\right) \rightarrow \ell_{k}\left(-p_{2}\right) \bar{\ell}_{m}\left(p_{3}\right)$ in terms of form factors $F_{L, R}$

$$
i \mathcal{M}=-i g \bar{u}_{\ell_{k}}\left(-p_{2}\right)\left(F_{L} P_{L}+F_{R} P_{R}\right) v_{\ell_{m}}\left(p_{3}\right)
$$

2.- Use previous Feynman rules and fat propagators: All 1-loop contributions given by an expansion in even powers of Y_{ν} :

$$
F_{L, R}^{\mathrm{MIA}}=\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} f_{L, R}^{\left(Y^{2}\right)}+\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} f_{L, R}^{\left(Y^{4}\right)}+\ldots
$$

3.- Expand all loop integrals in inverse powers of M_{R}
4.- Computation done in Feynman 't Hooft gauge.

Also in unitary gauge (checked gauge invariance)

- LO terms: $\mathcal{O}\left(Y_{\nu} Y_{\nu}^{\dagger}\right) \propto\left(v / M_{R}\right)^{2}$.
- NLO terms: $\mathcal{O}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right) \propto\left(v / M_{R}\right)^{2}$, genuine of LFV Higgs!!!
- $\mathcal{O}\left(Y_{\nu}^{6}\right) \propto\left(v / M_{R}\right)^{4}$: negligible!

MIA versus full results: $\mathcal{O}\left(Y_{\nu}^{2}\right)$

Example! (25 contributing diagrams)

$$
\begin{gathered}
\ell_{\ell_{k}} \\
F_{L}^{\mathrm{MIA}(1 \mathrm{c})\left(\mathrm{Y}^{2}\right)}=-\frac{1}{32 \pi^{2}} \frac{m_{\ell_{k}}}{m_{W}}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} m_{\ell_{m}}^{2} C_{12}\left(p_{2}, p_{1}, m_{W}, 0, M_{R}\right) \\
\propto v^{\operatorname{MIA}(1 \mathrm{c})\left(\mathrm{Y}^{2}\right)}=-\frac{1}{32 \pi^{2}} \frac{m_{\ell_{m}}}{m_{W}}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} m_{R}^{2} \text { (up to logarithms) }
\end{gathered}
$$

MIA versus full results: $\mathcal{O}\left(Y_{\nu}^{2}+Y_{\nu}^{4}\right)$

Example! (Besides previous $25 \mathcal{O}\left(Y_{\nu}^{2}\right)$-diagrams, there are $14 \mathcal{O}\left(Y_{\nu}^{4}\right)$-diagrams)

1-loop effective vertex for LFVH in the MIA

For heavy $\nu_{R}, m_{\ell_{m}} \ll m_{\ell_{k}} \ll m_{W}, m_{H}, m_{D} \ll M_{R}$, we get a very simple analytical result for $V_{H l_{k} l_{m}}^{\text {eff }}$, applicable to low-scale seesaw:

$$
i \mathcal{M}=-i g \bar{u}_{l_{k}} V_{H l_{k} l_{m}}^{\mathrm{eff}} P_{L} v_{l_{m}}
$$

$$
V_{H l_{k} l_{m}}^{\text {eff }}=\frac{1}{64 \pi^{2}} \frac{m_{\ell_{k}}}{m_{W}}\left[\frac{m_{H}^{2}}{M_{R}^{2}}\left(r\left(\frac{m_{W}^{2}}{m_{H}^{2}}\right)+\log \left(\frac{m_{W}^{2}}{M_{R}^{2}}\right)\right)\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}-\frac{3 v^{2}}{M_{R}^{2}}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}\right]
$$

Checked gauge invariance of the result (same in Feynmam 't Hooft and Unitary gauge)
$r(\lambda)=-\frac{1}{2}-\lambda-8 \lambda^{2}+2\left(1-2 \lambda+8 \lambda^{2}\right) \sqrt{4 \lambda-1} \arctan \left(\frac{1}{\sqrt{4 \lambda-1}}\right)+16 \lambda^{2}(1-2 \lambda) \arctan ^{2}\left(\frac{1}{\sqrt{4 \lambda-1}}\right) \simeq 0.3$
Note that $\mathcal{O}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)$ term depends on m_{H} but not $\mathcal{O}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)$ term.
Simple $\Gamma\left(H \rightarrow l_{k} \bar{l}_{m}\right)=\frac{g^{2}}{16 \pi} m_{H}\left|V_{H l_{k} l_{m}}^{\text {eff }}\right|^{2}$:

$$
\Gamma=\frac{g^{2} m_{\ell_{k}}^{2} m_{H}}{2^{16} \pi^{5} m_{W}^{2}}\left|\frac{m_{H}^{2}}{M_{R}^{2}}\left(r\left(\frac{m_{W}^{2}}{m_{H}^{2}}\right)+\log \left(\frac{m_{W}^{2}}{M_{R}^{2}}\right)\right)\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}-\frac{3 v^{2}}{M_{R}^{2}}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}\right|^{2}
$$

We also obtained the effective vertex for Higgs-mediated processes (zero external momenta):

$$
\left.V_{H l}^{e f f}{ }_{k}^{l} l_{m}^{e \mathrm{ext}}=0\right)=-\frac{1}{32 \pi^{2}} \frac{m_{\ell_{k}}}{m_{W}}\left(\frac{3 m_{W}^{2}}{2 M_{R}^{2}}\right)\left[\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}+v^{2}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}\right]
$$

Pheno App: rapid estimates of $\mathrm{BR}^{\max }$ allowed by data

"Global Fits" constraints [E. Fernández-Martínez et al., JHEP 1608 (2016) 033] imposed into the product $Y_{\nu} Y_{\nu}^{\dagger}$ by means of matrix $\eta=\left(v^{2} /\left(2 M_{R}^{2}\right)\right)\left(Y_{\nu} Y_{\nu}^{\dagger}\right)$, saturated at 3σ level defining a "maximum allowed by data" matrix:

$$
\eta_{3 \sigma}^{\max }=\left(\begin{array}{ccc}
1.62 \times 10^{-3} & 1.51 \times 10^{-5} & 1.57 \times 10^{-3} \\
1.51 \times 10^{-5} & 3.92 \times 10^{-4} & 9.24 \times 10^{-4} \\
1.57 \times 10^{-4} & 9.24 \times 10^{-4} & 3.67 \times 10^{-3}
\end{array}\right) \Rightarrow Y_{\nu}^{G F}=f\left(\begin{array}{ccc}
0.33 & 0.83 & 0.6 \\
-0.5 & 0.13 & 0.1 \\
-0.87 & 1
\end{array}\right)
$$

in a parameter space line given by the ratio $f / M_{R}=(3 / 10) \mathrm{TeV}^{-1}$.

Maximum rates: $\operatorname{BR}(H \rightarrow \tau \mu) \sim 3 \times 10^{-8}$ and $\operatorname{BR}(H \rightarrow \tau e) \sim 2 \times 10^{-7}$

Conclusions

- MIA results very simple and useful:
- Extremely good approximation valid for $M_{R} \gg v$.
- Decoupling behavior with M_{R} is manifest.
- Interesting implications for phenomenology.
- Valid for any low-scale seesaw model with same Feynman rules.
- Maximum LFVHD rates allowed by data in the ISS of $\mathcal{O}\left(10^{-7}-10^{-8}\right)$. Not testable at the LHC.
- If ATLAS and CMS excesses on $h \rightarrow \tau \mu$ confirmed, no low-scale seesaw model can be responsible for this LFV.

Backup slides

Neutrino data

The lightest neutrino mass $m_{\nu_{1}}$ is assumed as a free input parameter in agreement with the upper limit on the effective electron neutrino mass in β decays from the Mainz [C. Kraus et al., 2005] and Troitsk [V. N. Aseev et al., 2011] experiments,

$$
\begin{equation*}
m_{\beta}<2.05 \mathrm{eV} \quad \text { at } 95 \% \mathrm{CL} \tag{1}
\end{equation*}
$$

The other two light masses are obtained from:

$$
\begin{equation*}
m_{\nu_{2}}=\sqrt{m_{\nu_{1}}^{2}+\Delta m_{21}^{2}}, \quad m_{\nu_{3}}=\sqrt{m_{\nu_{1}}^{2}+\Delta m_{31}^{2}} . \tag{2}
\end{equation*}
$$

For simplicity, we set to zero the CP-violating phase of the $U_{\text {PMNS }}$ matrix and we have used the results of the global fit [M. C. Gonzalez-Garcia et al., 2012] leading to:

$$
\begin{array}{ll}
\sin ^{2} \theta_{12}=0.306_{-0.012}^{+0.012}, & \Delta m_{21}^{2}=7.45_{-0.16}^{+0.19} \times 10^{-5} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{23}=0.446_{-0.008}^{+0.008}, & \Delta m_{31}^{2}=2.417_{-0.014}^{+0.014} \times 10^{-3} \mathrm{eV}^{2} \tag{3}\\
\sin ^{2} \theta_{13}=0.0231_{-0.0019}^{+0.0019}, &
\end{array}
$$

where we have assumed a normal hierarchy.

Geometrical parametrization for Y_{ν}

E. Arganda, M.J. Herrero, X. Marcano, C. Weiland, PRD91(2015)1,

Assuming $M_{R_{i j}}=M_{R} \delta_{i j}$ and real Y_{ν} matrix:

$Y_{\nu} 9$ d.o.f $\longrightarrow 3$ vectors (+ global strength f):

$$
Y_{\nu} \equiv f\left(\begin{array}{c}
\boldsymbol{n}_{e} \\
\boldsymbol{n}_{\mu} \\
\boldsymbol{n}_{\tau}
\end{array}\right)\left\{\begin{array}{l}
3 \text { modulus : }\left|\boldsymbol{n}_{e}\right|,\left|\boldsymbol{n}_{\mu}\right|,\left|\boldsymbol{n}_{\tau}\right| \\
3 \text { relative flavor angles: } \theta_{\mu e}, \theta_{\tau e}, \theta_{\tau \mu} \\
\text { global rotation } O\left(\theta_{1}, \theta_{2}, \theta_{3}\right), O O^{T}=1
\end{array}\right.
$$

$$
Y_{\nu} Y_{\nu}^{T}=f^{2}\left(\begin{array}{ccc}
\left|\boldsymbol{n}_{e}\right|^{2} & \boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\mu} & \boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\tau} \\
\boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\mu} & \left|\boldsymbol{n}_{\mu}\right|^{2} & \boldsymbol{n}_{\mu} \cdot \boldsymbol{n}_{\tau} \\
\boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\tau} & \boldsymbol{n}_{\mu} \cdot \boldsymbol{n}_{\tau} & \left|\boldsymbol{n}_{\tau}\right|^{2}
\end{array}\right) \quad \begin{aligned}
& \text { Fully determined by }\left(c_{i j} \equiv \cos \theta_{i j}\right) \\
& \left(f,\left|\boldsymbol{n}_{e}\right|,\left|\boldsymbol{n}_{\mu}\right|,\left|\boldsymbol{n}_{\tau}\right|, c_{\mu e}, c_{\tau e}, c_{\tau \mu}\right)
\end{aligned} \quad \begin{aligned}
& \text { Independent of } O
\end{aligned}
$$

Exp. Searches: $\operatorname{LFV}_{\mu e}$ very suppressed $\Longrightarrow \operatorname{LFV}_{\mu e}=0 \leftrightarrow \boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\mu}=0 \leftrightarrow c_{\mu e}=0$ (denote as $\operatorname{LPF}_{\mu e}$)
We can choose $Y_{\nu}=A \cdot O$ with $A=f\left(\begin{array}{ccc}\left|\boldsymbol{n}_{e}\right| & 0 & 0 \\ 0 & \left|\boldsymbol{n}_{\mu}\right| & 0 \\ \left|\boldsymbol{n}_{\tau}\right| c_{\tau e} & \left|\boldsymbol{n}_{\tau}\right| c_{\tau \mu} & \left|\boldsymbol{n}_{\tau}\right| \sqrt{1-c_{\tau e}^{2}-c_{\tau \mu}^{2}}\end{array}\right)$

Examples of geometrical parametrization

Particular textures with extremely suppressed μe transitions but large LFV in $\tau \mu$ (TM scenarios) or τe sectors (TE scenarios), although not simultaneously:

$$
\begin{gathered}
Y_{\nu}^{\mathrm{TM} 4}=f\left(\begin{array}{ccc}
0.1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0.014
\end{array}\right), \quad Y_{\nu}^{\mathrm{TM} 5}=f\left(\begin{array}{ccc}
0 & 1 & -1 \\
0.9 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), \\
Y_{\nu}^{\mathrm{TM} 9}=f\left(\begin{array}{ccc}
0.1 & 0 & 0 \\
0 & 0.46 & 0.04 \\
0 & 1 & 1
\end{array}\right), \quad Y_{\nu}^{\mathrm{TE} 10}=f\left(\begin{array}{ccc}
0.94 & 0 & 0.08 \\
0 & 0.1 & 0 \\
1 & 0 & -1
\end{array}\right) .
\end{gathered}
$$

f is a scaling factor that characterizes global strength of Y_{ν}

$\Gamma\left(H \rightarrow \ell_{k} \bar{\ell}_{m}\right)$ to one-loop within the MIA

The decay amplitude of the process $H\left(p_{1}\right) \rightarrow \ell_{k}\left(-p_{2}\right) \bar{\ell}_{m}\left(p_{3}\right)$ can be generically decomposed in terms of two form factors $F_{L, R}$ by

$$
i \mathcal{M}=-i g \bar{u}_{\ell_{k}}\left(-p_{2}\right)\left(F_{L} P_{L}+F_{R} P_{R}\right) v_{\ell_{m}}\left(p_{3}\right),
$$

and the partial decay width can then be written as follows:

$$
\begin{aligned}
\Gamma\left(H \rightarrow \ell_{k} \bar{\ell}_{m}\right)= & \frac{g^{2}}{16 \pi m_{H}} \sqrt{\left(1-\left(\frac{m_{\ell_{k}}+m_{\ell_{m}}}{m_{H}}\right)^{2}\right)\left(1-\left(\frac{m_{\ell_{k}}-m_{\ell_{m}}}{m_{H}}\right)^{2}\right)} \\
& \times\left(\left(m_{H}^{2}-m_{\ell_{k}}^{2}-m_{\ell_{m}}^{2}\right)\left(\left|F_{L}\right|^{2}+\left|F_{R}\right|^{2}\right)-4 m_{\ell_{k}} m_{\ell_{m}} \operatorname{Re}\left(F_{L} F_{R}^{*}\right)\right)
\end{aligned}
$$

We consider the 2 most relevant contributions in the expansion in even powers of Y_{ν}, which in terms of the form factors can be written in the following way:

$$
F_{L, R}^{\mathrm{MIA}}\left(Y^{2}+Y^{4}\right)=\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} f_{L, R}^{\left(Y^{2}\right)}+\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} f_{L, R}^{\left(Y^{4}\right)}
$$

MIA computation: diagrams contributing to $\mathcal{O}\left(Y_{\nu}^{2}\right)$

$$
\begin{aligned}
F_{L}^{\mathrm{MIA}} & =\frac{1}{32 \pi^{2}} \frac{m_{\ell_{k}}}{m_{W}}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}\left(\tilde{C}_{0}\left(p_{2}, p_{1}, m_{W}, 0, M_{R}\right)-B_{0}\left(0, M_{R}, m_{W}\right)\right. \\
& -2 m_{W}^{2}\left(\left(C_{0}+C_{11}-C_{12}\right)\left(p_{2}, p_{1}, m_{W}, 0, M_{R}\right)+\left(C_{11}-C_{12}\right)\left(p_{2}, p_{1}, m_{W}, M_{R}, 0\right)\right) \\
& +4 m_{W}^{4}\left(D_{12}-D_{13}\right)\left(0, p_{2}, p_{1}, 0, M_{R}, m_{W}, m_{W}\right) \\
& -2 m_{W}^{2} m_{H}^{2} D_{13}\left(0, p_{2}, p_{1}, 0, M_{R}, m_{W}, m_{W}\right)+2 m_{W}^{2}\left(C_{0}+C_{11}-C_{12}\right)\left(p_{2}, p_{1}, M_{R}, m_{W}, m_{W}\right) \\
& \left.+m_{H}^{2}\left(C_{0}+C_{11}-C_{12}\right)\left(p_{2}, p_{1}, M_{R}, m_{W}, m_{W}\right)\right)
\end{aligned}
$$

$\mathcal{O}\left(Y_{\nu}^{2}\right)$ MIA results: diagram by diagram

Scenario with suppressed μe and τe mixing

$$
Y_{\nu}^{\mathrm{TM} 4}=f\left(\begin{array}{ccc}
0.1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0.014
\end{array}\right)
$$

Sum $1+8+10$ to have a finite contribution

Diags. 2-7 and 9 good full/MIA agreement

Sum $1+8+10$ same behavior but mismatch

We need to include NLO terms
$\mathcal{O}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right) \propto\left(v / M_{R}\right)^{2}$ in MIA expansion

MIA computation: diagrams contributing to $\mathcal{O}\left(Y_{\nu}^{4}\right)$

We have to take into account only dominant diagrams 1,8 , and 10

$$
\begin{aligned}
F_{L}^{\mathrm{MIA}} & =\frac{1}{32 \pi^{2}} \frac{m_{\ell_{k}}}{m_{W}}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} v^{2}\left(-2\left(C_{11}-C_{12}\right)\left(p_{2}, p_{1}, m_{W}, M_{R}, M_{R}\right)\right. \\
& \left.+\tilde{D}_{0}\left(p_{2}, 0, p_{1}, m_{W}, 0, M_{R}, M_{R}\right)+\tilde{D}_{0}\left(p_{2}, p_{1}, 0, m_{W}, 0, M_{R}, M_{R}\right)-C_{0}\left(0,0, M_{R}, M_{R}, m_{W}\right)\right)
\end{aligned}
$$

The interaction Lagrangian of ISS in the mass basis

$$
\begin{aligned}
\mathcal{L}_{W} & =-\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \sum_{j=1}^{9} W_{\mu}^{-} \bar{\ell}_{i} B_{\ell_{i} n_{j}} \gamma^{\mu} P_{L} n_{j}+h . c ., \\
\mathcal{L}_{Z} & =-\frac{g}{4 c_{W}} \sum_{i, j=1}^{9} Z_{\mu} \bar{n}_{i} \gamma^{\mu}\left[C_{n_{i} n_{j}} P_{L}-C_{n_{i} n_{j}}^{*} P_{R}\right] n_{j}, \\
\mathcal{L}_{H} & =-\frac{g}{2 m_{W}} \sum_{i, j=1}^{9} H \bar{n}_{i} C_{n_{i} n_{j}}\left[m_{n_{i}} P_{L}+m_{n_{j}} P_{R}\right] n_{j}, \\
\mathcal{L}_{G^{ \pm}} & =-\frac{g}{\sqrt{2} m_{W}} \sum_{i=1}^{3} \sum_{j=1}^{9} G^{-} \bar{\ell}_{i} B_{\ell_{i} n_{j}}\left[m_{\ell_{i}} P_{L}-m_{n_{j}} P_{R}\right] n_{j}+h . c, \\
\mathcal{L}_{G^{0}} & =-\frac{i g}{2 m_{W}} \sum_{i, j=1}^{9} G^{0} \bar{n}_{i} C_{n_{i} n_{j}}\left[m_{n_{i}} P_{L}-m_{n_{j}} P_{R}\right] n_{j},
\end{aligned}
$$

where,

$$
\begin{aligned}
& B_{\ell_{i} n_{j}}=U_{i j}^{\nu *} \rightarrow \sum_{i \in \text { Heavy }} B \ell_{\ell_{k} n_{i}} B_{\ell_{m} n_{i}}^{*} \simeq \frac{v^{2}}{m_{N}^{2}}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m} \\
& C_{n_{i} n_{j}}=\sum_{k=1}^{3} U_{k i}^{\nu} U_{k j}^{\nu *} \rightarrow \sum_{i, j \in \text { Heavy }} B_{\ell_{k} n_{i}} C_{n_{i} n_{j}} B_{\ell_{m} n_{j}}^{*} \simeq \frac{v^{4}}{m_{N}^{4}}\left(Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger}\right)^{k m}
\end{aligned}
$$

LFVHD within the ISS: full 1-loop calculation

E. Arganda., M.J. Herrero, X. Marcano, C. Weiland, PRD91(2015)1,015001

- Calculated in the Feynman-'t Hooft gauge.
- Formulas from [Arganda et al., PRD71(2005)035011] and adapted for ISS.
- Diagrams 1, 8 and 10 divergent and dominant at large Y_{ν} and M_{R}.

Results on LFVHD in the ISS imposing Global Fits (II)

Scenario with suppressed μe and τe mixing
$Y_{\nu}^{\mathrm{TM} 9}=f\left(\begin{array}{ccc}0.1 & 0 & 0 \\ 0 & 0.46 & 0.04 \\ 0 & 1 & 1\end{array}\right)$
Scenario with suppressed μe and $\tau \mu$ mixing

$$
Y_{\nu}^{\mathrm{TE} 10}=f\left(\begin{array}{ccc}
0.94 & 0 & 0.08 \\
0 & 0.1 & 0 \\
1 & 0 & -1
\end{array}\right)
$$

