Impact of heavy sterile neutrinos on the triple Higgs coupling PRD94(2016)013002 – JHEP04(2017)038

Cédric Weiland

Institute for Particle Physics Phenomenology, Durham University

EPS-HEP 2017 Venice

トイヨトイ

1/13

08 July 2017

Neutrino phenomena

Neutrino oscillations (best fit from nu-fit.org): $\Delta m_{21}^2 \simeq 7.5 \times 10^{-5} \text{eV}^2$ $|\Delta m_{23}^2| \simeq 2.5 \times 10^{-3} \text{eV}^2$ solar $\theta_{12} \simeq 34^{\circ}$

atmospheric reactor

 $\theta_{23} \simeq 42^{\circ}$ $\theta_{13} \simeq 8.5^{\circ}$

Absolute mass scale: cosmology $\Sigma m_{\nu_i} < 0.23 \text{ eV}$ [Planck, 2016] β decays $m_{\nu_e} < 2.05 \text{ eV}$ [Mainz, 2005; Troitsk, 2011]

- Mixing pattern different from CKM, ν lightness \leftarrow Different mass generating mechanism ?
- SM: no ν mass term, lepton flavour is conserved ٠ ⇒ need new Physics
 - Radiative models
 - Extra dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanisms

Massive neutrinos

• Simplest idea: Add Right-handed neutrinos ν_R (fermionic gauge singlet) $\mathcal{L}_{mass}^{\text{leptons}} = -Y_\ell \bar{L} H \ell_R - Y_\nu \bar{L} \tilde{H} \nu_R - \frac{1}{2} M_R \overline{\nu_R} \nu_R^c + \text{h.c.}$

 $\Rightarrow \text{After electroweak symmetry breaking } \langle H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$ $\mathcal{L}_{\text{mass}}^{\text{leptons}} = -m_{\ell} \ell_L \ell_R - m_D \bar{\nu}_L \nu_R - \frac{1}{2} M_R \overline{\nu_R} \nu_R^c + \text{h.c.}$

 $3 \nu_R$ without $M_R \Rightarrow 3$ mass eigenstates: $\nu \neq \nu^c$ $3 \nu_R$ with $M_R \Rightarrow 6$ mass eigenstates: $\nu = \nu^c$

- ν_R gauge singlets
 - \Rightarrow M_R not related to SM dynamics, not protected by symmetries
 - $\Rightarrow M_R$ between 0 and M_P

A new opportunity

• How to search for a heavy neutrino with $m_{\nu} > O(1 \text{ TeV})$? Can we put experimental limits on diagonal Yukawa couplings Y_{ν} ?

Use the Higgs sector to probe neutrino mass models

Before EWSB:

$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$

• After EWSB: $m_H^2 = 2\mu^2$, $v^2 = \mu^2/\lambda$

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \frac{1}{3!}\lambda_{HHH}H^{3} + \frac{1}{4!}\lambda_{HHHH}H^{4}$$

with $\lambda_{HHH}^{0} = -\frac{3M_{H}^{2}}{v}$, $\lambda_{HHHH}^{0} = -\frac{3M_{H}^{2}}{v^{2}}$

- HHH: Validate the Higgs mechanism as the origin of EWSB
 - Sizeable SM 1-loop corrections ($\mathcal{O}(10\%)$)
 - One of the main motivations for future colliders

Cédric Weiland (IPPP Durham)

Experimental prospects for the HHH coupling

Extracted from HH production

- At hadron colliders
 - Main production channels: gg dominates, VBF more sensitive
 - HL-LHC: $\sim 50\%$ for ATLAS or CMS [CMS-PAS-FTR-15-002] and [Baglio et al., 2013] $\sim 35\%$ combined
 - FCC-hh: 8% per experiment with 3 ab^{-1} using only $bar{b}\gamma\gamma$ [He et al., 2016]

 $\sim 5\%$ combining all channels

- At e^+e^- collider
 - Main production channels: Higgs-strahlung and VBF
 - ILC: 27% at 500 GeV with 4 ab^{-1} [Fujii et al., 2015] 10% at 1 TeV with 5 ab^{-1} [Fujii et al., 2015]

A generic approach

- To illustrate the impact of a new fermion coupling via the neutrino portal
- Simplified model with 3 light active and 1 heavy sterile neutrinos, with masses *m*₁, ..., *m*₄ and mixing *B*
- Modified couplings to W^{\pm} , Z^0 , H

$$\mathcal{L} \ni -\frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} W^-_{\mu} B_{ij} P_L n_j$$

$$-\frac{g_2}{2 \cos \theta_W} \bar{n}_i \gamma^{\mu} Z_{\mu} (B^{\dagger} B)_{ij} P_L n_j$$

$$-\frac{g_2}{2M_W} \bar{n}_i (B^{\dagger} B)_{ij} H(m_{n_i} P_L + m_{n_j} P_R) n_j$$

$$B_{3\times4} = \begin{pmatrix} B_{e1} & B_{e2} & B_{e3} & B_{e4} \\ B_{\mu1} & B_{\mu2} & B_{\mu3} & B_{\mu4} \\ B_{\tau1} & B_{\tau2} & B_{\tau3} & B_{\tau4} \end{pmatrix}$$

イロト イボト イラト イラ

3+1 model

Beyond SM: simplified 3+1 Dirac model

- New 1-loop diagrams and new counterterms
 - \rightarrow Evaluated with <code>FeynArts</code>, <code>FormCalc</code> and <code>LoopTools</code>
- Strongest experimental constraints on active-sterile mixing: EWPO [de Blas, 2013]
 - $$\begin{split} |B_{e4}| &\leqslant 0.041 \\ |B_{\mu4}| &\leqslant 0.030 \\ |B_{\tau4}| &\leqslant 0.087 \end{split}$$
- Loose (tight) perturbativity of λ_{HHH} :

$$\left(\frac{\max|(B^{\dagger}B)_{i4}|\,g_2\,m_{n_4}}{2M_W}\right)^3 < 16\pi\,(2\pi)$$

• Width limit: $\Gamma_{n_4} \leq 0.6 m_{n_4}$

Momentum dependence

• $\Delta^{(1)}\lambda_{HHH} = \frac{1}{\lambda^0} \left(\lambda_{HHH}^{1r} - \lambda^0\right)$

• Assume
$$B_{\tau 4} = 0.087, B_{e 4} = B_{\mu 4} = 0$$

- Deviation of the BSM correction with respect to the SM correction in the insert
- $\max|(B^{\dagger}B)_{i4}|m_{n_4} = m_t \rightarrow m_{n_4} = 2.7 \text{ TeV}$ tight perturbativity of λ_{HHH} bound: $m_{n_4} = 7 \text{ TeV}$ width bound: $m_{n_4} = 9 \text{ TeV}$
- Largest positive correction at $q_H^* \simeq 500 \,\text{GeV}$, heavy ν decreases it
- Large negative correction at large q_H^* , heavy ν increases it

3+1 model

Results in 3+1 simplified model

- $\Delta^{\text{BSM}} = \frac{1}{\lambda_{HHH}^{1r,\text{SM}}} \left(\lambda_{HHH}^{1r,\text{full}} \lambda_{HHH}^{1r,\text{SM}} \right)$
- Red line: tight perturbativity of λ_{HHH} bound
- Heavy ν effects below the HL-LHC sensitivity (35%)
- Heavy ν effects clearly visible at the ILC (10%) and FCC-hh (5%)
- Similar behaviour for active-sterile mixing B_{e4} and $B_{\mu4}$

30

25

20

15

10

5

ABSM [%]

12

The inverse seesaw mechanism

- Lower seesaw scale from approximately conserved lepton number
- Add fermionic gauge singlets u_R (L = +1) and X (L = -1) [Mohapatra and Valle, 1986]

$$\mathcal{L}_{inverse} = -Y_{\nu}\overline{L}\tilde{\phi}\nu_{R} - M_{R}\overline{\nu_{R}^{c}}X - \frac{1}{2}\mu_{X}\overline{X^{c}}X + \text{h.c.}$$

with
$$m_D = Y_{\nu}v$$
, $M^{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$
 $m_{\nu} \approx \frac{m_D^2}{M_R^2}\mu_X$
 $m_{N_1,N_2} \approx \mp M_R + \frac{\mu_X}{2}$
 H
 L
 L
 L
 $2 \text{ scales: } \mu_X \text{ and } M_R$

- Decouple neutrino mass generation from active-sterile mixing
- Inverse seesaw: $Y_{\nu} \sim \mathcal{O}(1)$ and $M_R \sim 1 \text{ TeV}$
 - \Rightarrow within reach of the LHC and low energy experiments

Calculation and constraints in the ISS

 Similar diagrams to the 3+1 Dirac scenario but with Majorana neutrinos

Formulas for both Dirac and Majorana fermions coupling through the neutrino portal are available

Accommodate low-energy neutrino data using parametrization

$$\mu_X = M_R^T Y_\nu^{-1} U_{\text{PMNS}}^* m_\nu U_{\text{PMNS}}^\dagger Y_\nu^{T-1} M_R v^2 \qquad \text{and beyond}$$

- Charged lepton flavour violation, e.g. ${
 m Br}(\mu
 ightarrow e \gamma) < 4.2 imes 10^{-13}$ [MEG, 2016]
- Global fit to EWPO and lepton universality tests [Fernandez-Martinez et al., 2016]
- Width limit: $\Gamma_N \leq 0.6 m_N$
- Yukawa perturbativity: $|\frac{Y_{\nu}^{2}}{4\pi}| < 1.5$

Results in the ISS

Conclusions

- ν oscillations \rightarrow New physics is needed to generate masses and mixing
- One of the simplest ideas: Add right-handed, sterile neutrinos
- Corrections to the HHH coupling from heavy ν as large as 30%: measurable at future colliders
 - Maximal for diagonal $Y_{
 u}$
 - Provide a new probe of the $\mathcal{O}(10)$ TeV region
 - Complementary to existing observables
- Generic effect, expected in all models with TeV fermions and large Higgs couplings
- Next step: Corrections to the di-Higgs production cross-section

Backup slides

≣ ► ≣ ⊫ ઝેલ્લ 08 July 2017 1/9

<ロ> <回> <回> <回> < 回> < 回>

Type I and low-scale seesaw

• Taking $M_R \gg m_D$ gives the "vanilla" type 1 seesaw

$$\mathbf{m}_{\nu} = -m_D^T M_R^{-1} m_D$$

• Cosmological limit: $\Sigma m_{
u_i} < 0.23 \; \mathrm{eV}$ [Planck, 2016]

$$\mathbf{m}_{\nu} \sim 0.1 \,\mathrm{eV} \Rightarrow \begin{vmatrix} Y_{\nu} \sim 1 & \mathrm{and} & M_R \sim 10^{14} \,\mathrm{GeV} \\ Y_{\nu} \sim 10^{-6} \,\mathrm{and} & M_R \sim 10^2 \,\mathrm{GeV} \end{vmatrix}$$

• Type I seesaw: $m_{
u}$ suppressed by small active-sterile mixing m_D/M_R

• Cancellation in matrix product (from L nearly conserved) \rightarrow Low-scale seesaw with large active-sterile mixing m_D/M_R , e.g. inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987] linear seesaw [Akhmedov et al., 1996, Barr, 2004, Malinsky et al., 2005] low-scale type I [Ilakovac and Pilaftsis, 1995] and others

Renormalization procedure for the HHH coupling I

• No tadpole:
$$t_H^{(1)} + \delta t_H = 0 \Rightarrow \delta t_H = -t_H^{(1)}$$

• Counterterms:

$$\begin{split} M_H^2 &\to M_H^2 + \delta M_H^2 \\ M_W^2 &\to M_W^2 + \delta M_W^2 \\ M_Z^2 &\to M_Z^2 + \delta M_Z^2 \\ e &\to (1 + \delta Z_e) e \\ H &\to \sqrt{Z_H} = (1 + \frac{1}{2} \delta Z_H) H \end{split}$$

• Full renormalized 1–loop triple Higgs coupling: $\lambda_{HHH}^{1r} = \lambda^0 + \lambda_{HHH}^{(1)} + \delta \lambda_{HHH}$

$$\frac{\delta\lambda_{HHH}}{\lambda^0} = \frac{3}{2}\delta Z_H + \delta t_H \frac{e}{2M_W \sin \theta_W M_H^2} + \delta Z_e + \frac{\delta M_H^2}{M_H^2} - \frac{\delta M_W^2}{2M_W^2} + \frac{1}{2} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} \left(\frac{\delta M_W^2}{M_W^2} - \frac{\delta M_Z^2}{M_Z^2}\right)$$

Renormalization procedure for the HHH coupling II

OS scheme

$$\begin{split} \delta M_W^2 &= Re \Sigma_{WW}^T (M_W^2) \\ \delta M_Z^2 &= Re \Sigma_{ZZ}^T (M_Z^2) \\ \delta M_H^2 &= Re \Sigma_{HH} (M_H^2) \end{split}$$

• Electric charge:

$$\delta Z_e = \frac{\sin \theta_W}{\cos \theta_W} \frac{\text{Re} \Sigma_{\gamma Z}^T(0)}{M_Z^2} - \frac{\text{Re} \Sigma_{\gamma \gamma}^T(M_Z^2)}{M_Z^2}$$

• Higgs field renormalization

$$\delta Z_{H} = -\operatorname{Re} \frac{\partial \Sigma_{HH}(k^{2})}{\partial k^{2}} \bigg|_{k^{2} = M_{H}^{2}}$$

イロト (同ト (ヨト)

Next-order terms in the μ_X -parametrization

- Weaker constraints on diagonal couplings
 - \rightarrow Large active-sterile mixing $m_D M_R^{-1}$ for diagonal terms
- Previous parametrizations built on the 1st term in the $m_D M_R^{-1}$ expansion \rightarrow Parametrizations breaks down
- Solution: Build a parametrization including the next order terms
- The next-order μ_X -parametrization is then

$$\mu_X \simeq \left(\mathbf{1} - \frac{1}{2}M_R^{*-1}m_D^{\dagger}m_DM_R^{T-1}\right)^{-1}M_R^Tm_D^{-1}U_{\rm PMNS}^*m_\nu U_{\rm PMNS}^{\dagger}m_D^{T-1}M_R\left(\mathbf{1} - \frac{1}{2}M_R^{-1}m_D^Tm_D^*M_R^{\dagger-1}\right)^{-1}$$

Experimental measurement of the HHH coupling

• Extracted from HH production

• Destructive interference between diagrams with and without λ_{HHH}

Results using the Casas-Ibarra parametrization

Parameter scan in Casas-Ibarra parametrization

- Random scan: 180000 points with degenerate M_R and μ_X
 - $\begin{array}{lll} 0 & \leqslant \theta_i & \leqslant 2\pi, \ (i=1,2,3) \\ 0.2 \ {\rm TeV} & \leqslant M_R & \leqslant 1000 \ {\rm TeV} \\ 7 \times 10^{-4} \ {\rm eV} & \leqslant \mu_X & \leqslant 8.26 \times 10^4 \ {\rm eV} \end{array}$

•
$$\Delta^{\text{BSM}} = \frac{1}{\lambda_{HHH}^{1r,\text{SM}}} \left(\lambda_{HHH}^{1r,\text{full}} - \lambda_{HHH}^{1r,\text{SM}} \right)$$

- Strongest constraints:
 - Lepton flavour violation, mainly $\mu \rightarrow e\gamma$
 - Yukawa perturbativity (and neutrino width)

イロト イボト イヨト イヨ

 Large effects necessarily excluded by LFV constraints ?

Suppressing LFV constraints

- How to evade the LFV constraints ?
- Approximate formulas for large Y_{ν} [Arganda, Herrero, Marcano, CW, 2015]:

$$\mathrm{Br}_{\mu \to e\gamma}^{\mathrm{approx}} = 8 \times 10^{-17} \mathrm{GeV}^{-4} \frac{m_{\mu}^{5}}{\Gamma_{\mu}} |\frac{\mathrm{v}^{2}}{2M_{R}^{2}} (Y_{\nu}Y_{\nu}^{\dagger})_{12}|^{2}$$

• Solution: Textures with $(Y_{\nu}Y_{\nu}^{\dagger})_{12} = 0$

$$Y_{\tau\mu}^{(1)} = |Y_{\nu}| \begin{pmatrix} 0 & 1 & -1\\ 0.9 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}$$

• Or even take Y_{ν} diagonal

イロト イボト イヨト イヨ

08 July 2017 8 / 9

Results for $Y_{\tau\mu}^{(1)}$

- Right: Full calculation in black, approximate formula in green
- Well described at $M_R > 3$ TeV by approximate formula

$$\Delta_{\text{approx}}^{\text{BSM}} = \frac{(1 \text{ TeV})^2}{M_R^2} \left(8.45 \operatorname{Tr}(Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger) - 0.145 \operatorname{Tr}(Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger) \right)$$

• Can maximize $\Delta^{\rm BSM}$ by taking $Y_{\nu} \propto {
m I}_3$

Cédric Weiland (IPPP Durham)

08 July 2017 9 / 9

u and HHI