$^3\text{He}/^4\text{He}$ ratio in Cosmic Rays with AMS-02

Paolo Zuccon – MIT
on behalf of the AMS-02 collaboration

EPS Conference on High Energy Physics
Venice, Italy 5-12 July 2017
Motivation

- Element abundances in Cosmic rays, is different form the one observed in the solar system. Spallation reactions of CR nuclei on the ISM are responsible for these differences.

- The isotopic composition of each element is also strongly biased by spallation interactions.

- Both the element and the isotopic abundances in the CR at the Earth offer a mean to investigate the propagation of CR in our galaxy.

- As most of the B in CR is produced by C spallation, most of the 3He is produced by 4He spallation.

- 4He/3He and 3He/4He are probing different propagation distances, accounting for the the smaller 4He spallation cross section, when compared to the Carbon one.
Available measurements

![Graph showing
AMS and the 3He/4He measurement

- AMS-02 is a precision Multipurpose spectrometer installed on ISS operating since May 2011.
- It is made of several sub-detectors for a redundant Particle Identification.
- Mass is determined through the simultaneous measurement of Charge, Ridity and Velocity.

Redundant Z measurement allows for a clean selection of He (Z=2) events.
Measuring Isotopic composition with AMS

AMS measure the mass using a simultaneous determination of Rigidity, Charge and Velocity:

\[m = \frac{Z R}{\gamma \beta} \]

We measure the velocity \(\beta \) with the RICH

- RICH NaF
 \[\frac{\sigma_\beta}{\beta} \approx 0.3\% \]
 effective range \(0.75 < \beta < 0.98 \)
 \[0.7 < E_{\text{kin}} < 3 \text{ GeV/n} \]

- RICH AGL
 \[\frac{\sigma_\beta}{\beta} \approx 0.1\% \]
 effective range \(0.96 < \beta < 0.996 \)
 \[2.6 < E_{\text{kin}} < 10 \text{ GeV/n} \]

- Tracker rigidity resolution is \(\approx 8\% \), for \(E_{\text{kn}} \) \([0.8 – 10]\) GeV/n
- This prevents an efficient event by event identification of \(^3\text{He}\) and \(^4\text{He}\).
- The identification of the abundance of \(^3\text{He}\) and \(^4\text{He}\) must come from a template fitting to the mass distribution.
AMS He Data: mass vs Kinetic E

RICH NaF

RICH Aerogel

Mass (a.m.u.) vs Kinetic Energy/n (GeV/n)
AMS He Data: mass vs Kinetic E

RICH NaF

RICH Aerogel

Mass (a.m.u.) vs Kinetic Energy/n (GeV/n)
Measurement Strategy

• Select a narrow bins in beta
• For those event calculate $1/m$ using,

$$\frac{1}{m} = \frac{\gamma \beta}{Z} \frac{1}{R}$$

where $1/R$ and β have Gaussian like errors

• The resulting $1/m$ distribution is expected to be the convolution of $1/R$ and β distributions.

• At first order $1/m$ has gaussian like distribution with sigma

$$\frac{\sigma_{1/m}}{1/m} = \sqrt{(\frac{\sigma_{1/R}}{1/R})^2 + \left(\frac{\gamma^2 \sigma_{\beta}}{\beta}\right)^2}$$

$E_k = 3 \text{ GeV} / n \approx 9\% \approx 0.1\%$

$E_k = 10 \text{ GeV} / n \approx 12\% \approx 13\%$
Rigidity and beta resolution in AMS

1/R resolution from MC

We build a 1/mass template using an analytic function derived from the 1/R distribution.
AMS data: He isotopes fit

- Two templates sharing the same analytical expression: one for ^4He and one for ^3He
- ^3He template shape is fixed from ^4He template shape and the isotope masses ratio
 - ^3He template peak fixed to be $m_4/m_3 \times ^4\text{He}$ template peak
 - ^3He template sigma fixed to be $m_4/m_3 \times ^4\text{He}$ template sigma (constant relative error)

\[\chi^2/\text{df}= \]

- 3 GeV/n
 \[\chi^2/\text{df}=90/73 \]
 \[\text{Ratio: } 18.51 \pm 0.06 \% \]

- 4 GeV/n
 \[\chi^2/\text{df}=98/78 \]
 \[\text{Ratio: } 18.11 \pm 0.07 \% \]

- 6 GeV/n
 \[\chi^2/\text{df}=110/86 \]
 \[\text{Ratio: } 17.57 \pm 0.08 \% \]

- 9.5 GeV/n
 \[\chi^2/\text{df}=117/109 \]
 \[\text{Ratio: } 16.1 \pm 0.16 \% \]

P. Zucco -- MIT
EPS - Venice 2017
Test of the accuracy of the fitting procedure

- AMS MC Simulation + use the measured He (3He+4He) spectrum and a realistic isotope fraction
- use MC information to predict 3He/4He that should be measured
- compare prediction with result from the Fitting Procedure.

Graphs:
- **NaF fit** versus **NaF MC prediction**
- **AGL fit** versus **AGL MC prediction**

Tables:
- **NAF**
 - χ^2 / ndf: 13.95 / 15
 - Mean: 1.023 ± 0.004

- **AGL**
 - χ^2 / ndf: 39.1 / 9
 - Mean: 1.013 ± 0.001
Corrections for He Isotope flux ratio

Energy Loss

- From MC get the average Energy loss $\langle \Delta E \rangle$
 Top of AMS $\leftarrow\rightarrow$ Inner Tracker
- Correct for the path length
- Calculate E_k at the top of AMS

Average Energy Loss

Acceptance and Fragmentation

From MC we extract corrections for

A. 4He and 3He different acceptance
B. 3He production 4He-3He

$$\frac{\Phi_3}{\Phi_4} = A \frac{N_3}{N_4} - B$$

Flux ratio

Measured ratio
Corrections from Monte Carlo simulation

NaF

$^4\text{He}/^3\text{He}$ Acceptance correction (A)

Aerogel

$^4\text{He} \rightarrow ^3\text{He}$ correction (B)

Acceptance and Fragmentation corrections reliability is being verified \rightarrow Sys error
Final result and previous measurements

Preliminary Data. Please refer to the AMS forthcoming publication in PRL.

Error bars: stat + sys
Three independent 3He/4He analyses

1. Resolution model template fitting *(just presented)*
2. Data driven Template Fitting
 - 4He mass distribution extracted from the data using geomagnetic cutoff selection of quasi-pure sample
 - 3He mass distribution template generated from the 4He one
 - Fit templates vs energy
3. Tracker resolution unfolding
 - Use the full tracker resolution matrix from MC
 - Unfold the mass distribution to extract 3He/4He at the top of instrument

The three methods produce results which agree within 4%
Summary

• A new preliminary measurement of $^{3}\text{He}/^{4}\text{He}$ ratio in cosmic rays extending from E_k 0.8 to 10 GeV/n has been presented.

• The measurement extends in an energy range where previous measurement are sparse and affected by large errors.

• The measurement is dominated by systematic uncertainty on the interactions within AMS. Further studies will reduce such uncertainty.

• Li and Be isotopic composition analysis is currently undergoing.
THANK YOU
Backup
AMS measurement compared to propagation models

Preliminary Data.
Please refer to the AMS forthcoming publication in PRL.

- **Model I**
 - fit to: \(B/C \) (pre-AMS) + PAMELA \(^3\text{He}/^4\text{He} \)
 - Diffusion Coefficient \(D(E) \propto E^\delta \), \(\delta \approx 0.2 \)

- **Model II**
 - fit to: \(B/C \) (pre-AMS) + BESS and IMAX \(^3\text{He}/^4\text{He} \)
 - Diffusion Coefficient \(D(E) \propto E^\delta \), \(\delta \approx 0.6 \)
AMS: A TeV precision, multipurpose spectrometer

Particles and nuclei are defined by their charge (Z) and energy ($E \sim P$)

- **TRD** Identify e^+, e^-, Z
- **Silicon Tracker** Z, P
- **ECAL** E of e^+, e^-

- **MDR** ($Z=2$) ~ 3.2 TV
- **Z and P** are measured independently by the Tracker, RICH, TOF and ECAL

- **TOF** Z, E

- **RICH** Z, E

- **AMS**: A TeV precision, multipurpose spectrometer

- **Magnet** $\pm Z$ 20 m

- **µ** $\Delta [-40 -30 -20 -10 0 10 20 30 40]$

- **Events**

- **ISS He Data 55-65 GV**

- **He Simulation**

- **P. Zucco** -- MIT

- **EPS - Venice 2017**

- **$\sigma_{\beta}=2\%$**
- **$\sigma_{Time}=80$ ps**
Uncertainties

Tot err (Stat + Sys)
- Statistical Error
- Sys 1 (frag 4He->He3)
- Sys 2 (Accept. ratio)
- Sys 3 (Fitting)
Compatibility MIT/CIEMAT

![Graph showing the relationship between relative distance from average and E_kn (GeV/n). The graph includes data points for CIEMAT CD and MIT PZ.]
Fit results: width of the 4He peak

$$\sigma_{1/m} = \frac{1}{m} \sqrt{\left(\frac{\sigma_1}{1/R}\right)^2 + \gamma^4 \left(\frac{\sigma_\beta}{\beta}\right)^2} = \frac{1}{m} \sqrt{(p_0 + p_1 E_k + p_2 E_k^2)^2 + \gamma^4 (p_3)^2}$$

![Graph showing sigma of 4He 1/m peak as a function of E_k/n (GeV/n)]

- $\sigma_{1/m} = 0.024 \approx 9\%$
- Expected from tracker resolution
- Fitted RICH beta resolution 0.073 %