Search for neutrinoless double-beta decay with the **SuperNEMO** demonstrator

Carla Macolino (LAL-Orsay CNRS)
on behalf of the SuperNEMO collaboration

EPS-HEP2017 Venezia Lido July,7th 2017

From NEMO-3 to SuperNEMO

- Tracker + calorimetric experiment searching for $0V\beta\beta$ decay
- Located at Modane underground laboratory from Feb. 2003 to Jan. 2011
- 5 years of effective data taking
- 10 kg total of different ββ isotopes

NEMO-3 results

and others:

- $2\nu\beta\beta$ (meas.) and $0\nu\beta\beta$ of ⁸²Se
- $2\nu\beta\beta$ (meas.) of ⁴⁸Ca
- $2\nu\beta\beta$ (meas.) and $0\nu\beta\beta$ of ¹⁵⁰Nd
- $2\nu\beta\beta$ (meas.) of ¹¹⁶Cd
- decays to excited states

 Carla Macolino (LAL-Orsay)

Many results with different isotopes and on different mechanisms

$0 \nu 4 eta$ of 150Nd

Possible with Dirac Neutrinos

Best candidate 150 Nd $\xrightarrow{2.079}$ MeV $\xrightarrow{150}$ Gd + $4e^-$

First measurement ever

accepted by PRL arXiv: 1705.08847

SuperNEMO technique

NEMO-3/SuperNEMO unique features

- Full topological event reconstruction
- Source separated from detector (can host any isotope)

Strong background suppression by particle identification, event characterisation and timing

- (France)
- Modular design (20 modules) with total mass of 100 kg
- Demonstrator module currently being installed at Modane
- Demonstrator: 7 kg of ⁸²Se running for 2.5 yr

OvBB event topology

Unique double beta decay experiment with the direct reconstruction of the two electrons

Full signature of $0\nu\beta\beta$ events and

powerful background rejection

Basic selection criteria:

- 2 tracks with negative curvature
- common vertex
- 2 PMT hits with sum E > 200 keV
- PMT-track association

SuperNEMO background

External background

- Natural radioactivity
 (γ,n) from the detector
 components or its
 surroundings
- Cosmic rays
- Neutrons

Internal background

Radioactive contaminations in the source foil or Radon daughters depositions on the foil or tracking wires

 $\begin{array}{c} 0\nu2\beta : \\ ^{208}{\rm TI}\;\gamma\;2.6\;{\rm MeV} \\ (n,\gamma)\;{\rm up\;to}\;{\sim}10\;{\rm MeV} \end{array}$

0
u2eta: 208 TI $\mathsf{Q}_eta=5.0~\mathsf{MeV}$ 214 Bi $\mathsf{Q}_eta=3.27~\mathsf{MeV}$

Measure

SuperNEMO background

- 214 Bi important background with Q_{β} =3.27 MeV
- Can originate from internal
 ²³⁸U-chain contamination or from
 ²²²Rn emanation/diffusion
- Ultra-pure material selection
- Radon tent
- alpha tagging: $lel \alpha$ channel

²¹⁴Bi
$$\xrightarrow{e^-}$$
 214 Po $\xrightarrow{Q_{\alpha}}$ 210 Pb $Q_{\alpha} = 3.27 \text{ MeV}$ (164 us) $Q_{\alpha} = 7.8 \text{ MeV}$

 $\mathcal{A}(^{222}\text{Rn}) = 0.15 \text{ mBq/m}^3$

Nucl.Instrum.Meth. A845 (2017)

SuperNEMO tracker

Nucl.Instrum.Meth. A824 (2016)

- Multi-wire drift chamber in Geiger mode
- Ultrapure materials: copper, steel, duracon
- Robotic production of 2034 drift cells
- Radiopure gas flow, anti-radon sealing
- < I% dead channels</p>

SuperNEMO calorimeter

- 520 main optical modules
- 8" high QE radiopure PMTs
- $\sigma_{\rm t}$ = 400 ps at I MeV
- Calibration system allows stability to < 1%

SuperNEMO source foils

- 36 foils made of ⁸²Se powder mixed with PVA glue + mylar mechanical support (200 um thick)
- 7 kg of ⁸²Se ($Q_{\beta\beta}$ =2.996 MeV)
- Target limits (challenging) on foil contamination:

 $^{208}TI \le 2 \mu Bq/kg$ $^{214}Bi \le 10 \mu Bq/kg$

 BiPo detector in Canfranc laboratory to measure source foil contamination: preliminary results indicate levels of ²⁰⁸TI [10-30] uBq/kg (90% C.L.)

Installation status

- Half-detector already installed, other half currently under installation at LSM
- Source foils under measurement with BiPo at Canfranc
- Demonstrator running by end of 2017

SuperNEMO sensitivity

	SuperNEMO	Status
isotope	⁸² Se (or other, e.g. ¹⁵⁰ Nd)	(7 kg)
isotope mass	7 → 100 kg	√
radon	0.15 mBq/m ³	in progress
internal contamination	²⁰⁸ TI ≤ 2 μBq/kg ²¹⁴ Bi ≤ 10 μBq/kg	in progress
σ _E (FWHM)	8% @ 1 MeV	✓

From S. Calvez, talk at Moriond 2017

10000

Summary

- Tracker + calorimetric experiment searching for $0V\beta\beta$ decay
- Demonstrator module under installation at Laboratoire Souterrain de Modane
- Demonstrator:
 - *7 kg of 82Se running for 2.5 yr
 - *Sensitivity on effective mass 0.2-0.55 eV
- Challenges: low radioactivity source foil, extremely low levels of Radon
- Half-demonstrator module already installed. Data taking expected at the end of 2017
- Modular design (20 modules) with total mass of 100 kg Ultimate sensitivity 40-110 meV

Backup

Backup slides

Radon

2. Flow through cooled carbon trap.

3. Release into electrostatic detector.

70 atoms per m³
30 times better than NEMO-3

4. For reasonable gas-flow rates :

 $A(^{222}{\rm Rn}) = 150 \,\mu{\rm Bq/m^3}$

The Bi-Po 3 detector

- HPGe spectroscopy not sensitive enough to reach few µBq/Kg: BiPo-3 dedicated setup at Canfranc underground lab
- 2 modules of 3.0x0.6 m² can measure up to 1.4 kg of ⁸²Se foil with thickness of 40 mg/cm²
- ²¹⁴Bi and ²⁰⁸TI measured trough process from natural radioactivity chain
- Thin radiopure plastic scintillators coupled to lightguides and low radioactivity PTMs

