

More results from the OPERA experiment

Oscillation Project with Emulsion tRacking Apparatus

730 Km

- Long baseline neutrino oscillation experiment
- **CNGS** quasi pure wide band v_{μ} beam
- <E> = 17 GeV optimized to maximize v_{τ} CC interactions
- Nuclear emulsions + Lead (150 000 ECC bricks) "active target",
 allowing 3D particle reconstruction, sub-micron spatial resolution and high background rejection rate.
- More than 18 000 neutrino interactions collected in 5 years
- More than 7000 v_{μ} interactions fully reconstructed and studied
- Detection of 5 v_{τ} CC interaction by a full reconstruction of the primary vertex and observation of τ lepton decay topologies (*PRL* 115 (2015) 121802)

SM1 → ← SM2

Target area: (ECC + CS + planes of scintillator strips)

Muon spectrometer (Magnet+RPC+PT)

Brick Manipulator System

~ 150.000 bricks 1.25 kt mass

- New generation automatic emulsion scanning systems
- Scanning speed/system > 20cm²/h
- Customized commercial optics and mechanics
- Customized DAQ & event reconstruction software
- ~ 0.3 μm spatial resolution
- ~ 2 mrad angular resolution
- ~ 95% detection efficiency on a single emulsion film

Neutrino interaction reconstruction chain

Events selection with looser kinematical cuts

Selection criteria where modified to increase the statistics and multivariate analysis was applied to select new interesting events

- ✓ 5 more v_{τ} candidates
- √ S/B reduced from 10 to 3
- ✓ Improvement in Δm^2_{23} measurement, the first ever in appearance mode

Channel		Expected Ba	Expected Signal	Total		
	Charm	Had. re-interaction	Large μ -scat.	Total		Expected
au o 1h	0.15	1.28	_	1.43	2.96	4.39
au ightarrow 3h	0.44	0.09	_	0.52	1.83	2.35
$ au ightarrow \mu$	0.008	_	0.02	0.03	1.15	1.18
au ightarrow e	0.035	_	_	0.03	0.84	0.87
Total	0.63	1.37	0.02	2.0 ± 0.5	6.8 ± 1.4	8.8 ± 1.9

Variable	au o 1h		au o 3h		$ au o \mu$		au o e	
variable	OLD	NEW	OLD	NEW	OLD	NEW	OLD	NEW
$z_{dec} \; (\mu m)$	[44, 2600]	< 2600	<20	600	[44, 2600]	< 2600	<20	600
θ_{kink} (rad)	>0.0	2	< 0.5	> 0.02	>0.0)2	>0	.02
$p_{2ry} \ (GeV/c)$	>2	>1	>3	>1	[1, 1	5]	[1, 15]	>1
$p_{2ry}^T \; (GeV/c)$	>0.6 (0.3)	> 0.15	/	/	>0.25	>0.1	>().1
$p_{miss}^T \; (GeV/c)$	< 1	/	< 1	/	/		/	/
$\phi_{lH} \; (rad)$	$>\pi/2$	/	$>\pi/2$	/	/		/	/
$m, m_{min} \ (GeV/c^2)$	/		[0.5, 2]	/	/		/	/

Expected	Expected	Observed ν_{τ}	Δm^2_{23}		
Signal	Background	Observed ν_T	(10^{-3} eV^2)		
6.8	2.0	10	2.7 ± 0.6	68% C.L	

5.2 σ significance

Muon-less event 114301850

Two secondary vertices reconstructed in emulsion:

- short two prong (F.L. = 103 μm)
- charged one prong (kink) (F.L.= 1174 μ m, θ_k = 97mrad)

Event interpretation

Two possible rare processes:

- a) $v NC + c\overline{c}$ (only 3 events in CHORUS)
- b) v_{τ} CC + charm (never observed)

and possible backgrounds:

- v_{τ} CC + hadron interaction
- v_{μ} CC + charm + hadron interaction
- v_{μ} NC + 2 hadron interactions
- v_{μ} CC + 2 hadron interactions

A complete simulation was performed, considering the observed topology and OPERA event location efficiencies, 0.1 events expected.

Event classification by multivariate analysis

The event is classified as a tau neutrino interaction with charm production, never observed before !!

The significance evaluated with respect to the background only hypothesis is 3.5 σ

Multiplicity studies in neutrino-lead scattering

The average charged particles multiplicity at primary vertex was measured.

- ✓ Test for phenomenological and theoretical models
- ✓ Provides data to tune MC event generators.
- ✓ Test KNO Scaling

The average charged particles multiplicity at primary vertex was measured also for different lonization ($N_{grains}/100~\mu m$), this is peculiar in emulsion.

Cosmic-muons rate temperature dependance

Atmospheric temperature increase affects the cosmic-muons rate

Thanks for the attention

28 institutions - 140 physicists

Bari **Bologna LNF Frascati**

LNGS Napoli

Padova Roma

Salerno

LAPP Annecy IPHC Strasbourg

LHEP Bern

IHE Brussels

Hamburg

IRB Zagreb

METU Ankara

Technion Haifa

Jinjiu

Toho Kobe Nagoya **NIhon**

Aichi

INR Moscow Moscow **SINP MSU Moscow** JINR Dubna

http://operaweb.lngs.infn.it

