LATEST OSCILLATION RESULTS FROM THE NOVA EXPERIMENT

European Research Council

University of Sussex

Bruno Zamorano EPS - Venice - 6th July 2017

The NOvA experiment

- NuMI Off-Axis v_e Appearance, the leading neutrino oscillation experiment in the NuMI beam
- Two totally active scintillator detectors:
 - Far Detector: 14 kT, on surface
 - Near Detector: 300 T, 105 m underground
- I4 mrad off-axis narrowly peaked muon neutrino flux at 2 GeV, L/E ~ 405 km/ GeV
- v_{μ} disappearance channel: θ_{23} , Δm^{2}_{32}
- v_e appearance channel: mass hierarchy, δ_{CP} , θ_{13} , θ_{23} and octant degeneracy

- NuMI Off-Axis v_e Appearance, the leading neutrino oscillation experiment in the NuMI beam
- Two highly active scintillator detectors:
 - Far Detector: 14 kT, on surface
 - Near Detector: 300 T, 105 m underground
- I4 mrad off-axis narrowly peaked muon neutrino flux at 2 GeV, L/E ~ 405 km/ GeV
- v_{μ} disappearance channel: θ_{23} , Δm^{2}_{32}
- v_e appearance channel: mass hierarchy, δ_{CP} , θ_{13} , θ_{23} and octant degeneracy

The NOvA experiment

- NuMI Off-Axis v_e Appearance, the leading neutrino oscillation experiment in the NuMI beam
- Two highly active scintillator detectors:
 - Far Detector: 14 kT, on surface
 - Near Detector: 300 T, 105 m underground
- I4 mrad off-axis narrowly peaked muon neutrino flux at 2 GeV, L/E ~ 405 km/ GeV
- v_{μ} disappearance channel: θ_{23} , Δm^{2}_{32}
- v_e appearance channel: mass hierarchy, δ_{CP} , θ_{13} , θ_{23} and octant degeneracy

Also: neutrino cross sections at the ND, sterile neutrinos, supernovae...

The NOvA experiment

 Superb granularity for a detector this scale

 Outstanding event identification capability

Signal selection: ν_{μ} CC

- First: basic containment cuts: require a buffer of no activity around the event
- Muon ID: 4-variable k-nearest neighbours algorithm to identify muons
 - Track length

US

- dE/dx along track
- Scattering along track
- Track-only plane fraction
- Keep events with muon-ID > 0.75

Energy estimation

- Muon track: **length** \Rightarrow **E**_µ (Res: ~4%)
- Highly active detector: calorimetric measurement of E_{had}
- Hadronic system: Σ Total visible E \Rightarrow E_{had} (Res: ~20%)
- Reconstructed neutrino energy is the sum of them: $E_v = E_\mu + E_{had}$
- Neutrino energy resolution: 7%
- Narrow energy and identical detectors reduces impact of cross sections & FSI

muon

- 78 events in the FD for 473 w/o osc.
- 82 (3.9 beam bkg, 2.7 cosmic) at best fit
- X^2 /NDF = 41.6/17 driven by tail
- Systematics included in the fit have negligible pull terms (< 0.5)

 $|\Delta m^{2}_{32}| = 2.67 \pm 0.11 \times 10^{-3} \text{ eV}^{2}$ $\sin^{2}\theta_{23} = 0.404^{+0.030}_{-0.022}$ $= 0.624^{+0.022}_{-0.030}$

Maximal mixing disfavoured at 2.6σ

Comparison with other experiments

Maximal mixing disfavoured at 2.6σ Phys. Rev. Lett. 118, 151802 (2017)

Event selection

- Event selection based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

• Improvement in sensitivity from CVN equivalent to 30% more exposure

 Selection optimised for parameter measurement (increased signal efficiency by ng lower purity bins)

rained beam backgrounds with dedicated decompositions: beam $\nu_{\rm e}$ from and these from the distribution of Michel electrons

• Analysis uses four bins of energy and three bins of CVN

Far detector selected events

Observed 33 events in the FD (background 8.2 ± 0.8) **NOvA - FNAL E929** -400Run: 22242 / 18 Event: 232856 / --(cm) A 0.95 < CVN < 1 0.75 < CVN < 0.87 0.87 < CVN < 0.95 20 CVN = 0.991NH E = 1.63 GeV6.05×10²⁰ POT equiv. + FD Data Best Fit 15 -600 Background UTC Mon Feb 15, 2016 04:36:13.437062336 5600 10 Selectors from 2015 analysis show 5 consistent results LID: 34 events, 12.2 ± 1.2 bkg 0 2 3 3 3 LEM: 33 events, 10.3 ± 1.0 bkg Reconstructed energy (GeV)

B. Zamorano - Latest oscillation results from the NOvA experiment

Events / 0.5 GeV

5800

z (cm)

- Full joint-analysis including disappearance constraints
- Best fit to NH, $\delta_{CP} = 1.49\pi$ and $\sin^2(\theta_{23}) = 0.40$
- But best fit IH-NH has $\Delta X^2 = 0.47$
- \bullet Both octants and hierarchies allowed at I σ
- 3σ exclusion of IH, lower octant around $\delta_{CP} = \pi/2$
- Antineutrino data will resolve degeneracies

Phys. Rev. Lett. 118, 231801 (2017)

NC disappearance

- Search for active-sterile oscillation by measuring NC spectrum in both detectors
- 95 events observed for 83.5 ± 9.7 $(stat.) \pm 9.4$ (syst.) expected
- No evidence of oscillations involving sterile neutrinos
- Promising future sensitivities

NC disappearance

- Search for active-sterile oscillation by measuring NC spectrum in both detectors
- 95 events observed for 83.5 ± 9.7 (stat.) ± 9.4 (syst.) expected
- No evidence of oscillations involving sterile neutrinos
- Promising future sensitivities

arXiv: 1706.04592

(submitted to PRD)

Conclusions

- Indubitable observation of neutrino disappearance (78 obs, 473 exp.)
- Best fit for θ_{23} is non-maximal. Maximal mixing disfavoured at 2.6
- Small preference for normal hierarchy. Region in inverted hierarchy, lower octant and around $\delta_{CP} = \pi/2$ excluded at 3σ
- Neutral current event rate shows no evidence of sterile neutrinos
- Currently taking antineutrino data

THANKYOU FOR YOUR ATTENTION

www-nova.fnal.gov

BACKUP

ND measurements

- Uniquely sensitive to QE, RES and DIS (almost equally across the three)
- Absolute cross section or yield measurements will be limited to ~10% due to flux uncertainties
- Ability to measure a huge number of FSI channels
- v_{μ} CC inclusive and channels (0- π , 2p2h, Coh, π^{0} , ...)
- ν_{e} CC inclusive and channels (0- π , π^{0} , ...)
- NC inclusive and channels (π^0 , 2p2h, ...)
- ν_{μ} on ν_{e} scattering (flux constraint)

And all of the above with antineutrinos

