WHAT IS nuSTORM?
Neutrinos from stored muons

- Scientific objectives:
 1. %-level (ν_eN) cross sections
 - Double differential
 2. Sterile neutrino search
 - Beyond Fermilab SBN

- Precise neutrino flux:
 - Normalisation: < 1%
 - Energy (and flavour) precise

- $\pi \rightarrow \mu^+$ injection pass:
 - "Flash" of muon neutrinos
• Fast extraction at $>\sim 100$ GeV

• Conventional pion production and capture (horn)
 – Quadrupole pion-transport channel to decay ring
• Neutrino flux

- **νμ flash:**
 - Pion: $6.3 \times 10^{16} \, \text{m}^{-2}$ at 50m
 - Kaon: $3.8 \times 10^{14} \, \text{m}^{-2}$ at 50m
 - Well separated from pion neutrinos

- **νe and νμ from muon decay:**
 - ~10 times as many νe as, e.g. J-PARC beam
 - Flavour composition, energy spectrum
 - Use for energy calibration
WHY STUDY NEUTRINO INTERACTIONS?
To understand the nucleus, nucleon and contribute to nuclear physics

... but also ...
Search for CPiV in lbl oscillations

• Seek to measure asymmetry:
 \[P(\nu_\mu \rightarrow \nu_e) - P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \]

• Event rates, convolution of:
 – Flux, cross sections, detector mass, efficiency, \(E \)-scale
 • Measurements at %-level required
 – Theoretical description:
 • Initial state momentum, nuclear excitations, final-state effects
Systematic uncertainty and/or bias

Uncertainty (cross section and ratio)

Event mis-classification

Energy scale mis-calibration

Missing energy (neutrons)
Search for CPiV in lbl oscillations

• Seek to measure asymmetry:
 \[P(\nu_\mu \rightarrow \nu_e) - P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \]

• Event rates convolution of:
 – Flux, cross sections, detector mass, efficiency, \(E \)-scale
 • Measurements at %-level required

• Lack of knowledge of cross-sections leads to:
 – Systematic uncertainties; and
 – Biases; pernicious if \(\nu \) and \(\bar{\nu} \) differ
THE BENEFIT OF nuSTORM
$\nu_e N$ cross section measurements

The result and the prediction from GENIE 2.6.2 are statistically consistent.
Systematic uncertainties

- - - Statistical uncertainty

- Background models
 + resonant interactions affect background subtraction

- CCQE / 2p2h model
 + dominated by uncertainty in correlation effect strength

- Final-state interactions
 + pion absorption dominates

- Flux
 + beam focusing
 + tertiary hadron production
 + reweight to other experiments

- Muon reconstruction
 + muon energy scale dominates
 + tracking efficiency
 + muon angle and vertex position

- Recoil reconstruction
 + detector response to different particles - neutron dominates

Uncertainties projected onto longitudinal muon momentum

Cheryl Patrick, Northwestern University
CCQE measurement at nuSTORM

- CCQE at nuSTORM:
 - Six-fold improvement in systematic uncertainty compared with “state of the art”
 - Electron-neutrino cross section measurement unique

- Require to demonstrate:
 - ~<1% precision on flux

10.1103/PhysRevD.89.071301; arXiv:1305.1419

Individual ν_e measurements from T2K and MINERvA

nuSTORM & THE CERN PHYSICS BEYOND COLLIDERS STUDY GROUP
Physics Beyond Colliders study group

http://pbc.web.cern.ch
Elements of study

- **Physics case:**
 - Neutrino-scattering for:
 - Oscillation
 - Nuclear

- **Considerations:**
 - Energy range:
 - Long- and short-baseline neutrino
 - Nuclear and particle physics
 - Acceptance:
 - Rate
 - Neutrino-energy calibration

- **Accelerator:**
 - Full simulation that demonstrates ~1% flux precision
 - Energy range (i.e. sweep down from max)

- **Implementation:**
 - Feasibility at CERN (see next slide)

- **Detector:**
 - Others are “on this”, so:
 - Adopt performance of typical, or assumed, detector
• A credible proposal for siting at CERN, including:
 – SPS requirements
 – Fast extraction, beam-line
 – Target and target complex
 – Horn
 – Siting
 – Civil engineering
 – Radio-protection implications
Conclusions
Conclusions

• Muon accelerators have the potential to:
 – Revolutionise neutrino physics
 – Provide multi-TeV lepton-anti-lepton collisions

• nuSTORM can deliver:
 – nN scattering measurements with precision required to:
 • Serve the long- and short-baseline neutrino programmes
 • Provide a valuable probe for nuclear physics

• CERN PBC study: opportunity to define innovative programme:
 • nuSTORM:
 – Delivers critical measurement: $\nu_e/\nu_\mu N$ scattering;
 – Has discovery potential: sterile neutrinos;
 – Potential for 6D ionization-cooling programme to follow MICE
nuSTORM collaboration and FNAL study of nuSTORM (A.Bross et al) and especially
Event rates

Per 10^{21} POT illuminating 100 Tonne LAr detector at 50m

<table>
<thead>
<tr>
<th>μ^+ Channel</th>
<th>N_{evts}</th>
<th>μ^- Channel</th>
<th>N_{evts}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\nu}_\mu$ NC</td>
<td>1,174,710</td>
<td>$\bar{\nu}_e$ NC</td>
<td>1,002,240</td>
</tr>
<tr>
<td>ν_e NC</td>
<td>1,817,810</td>
<td>ν_μ NC</td>
<td>2,074,930</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$ CC</td>
<td>3,030,510</td>
<td>$\bar{\nu}_e$ CC</td>
<td>2,519,840</td>
</tr>
<tr>
<td>ν_e CC</td>
<td>5,188,050</td>
<td>$\bar{\nu}_\mu$ CC</td>
<td>6,060,580</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>π^+ Channel</th>
<th>N_{evts}</th>
<th>π^- Channel</th>
<th>N_{evts}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ NC</td>
<td>14,384,192</td>
<td>$\bar{\nu}_\mu$ NC</td>
<td>6,986,343</td>
</tr>
<tr>
<td>ν_μ CC</td>
<td>41,053,300</td>
<td>$\bar{\nu}_\mu$ CC</td>
<td>19,939,704</td>
</tr>
</tbody>
</table>

- ν_μ flash:
 - Pion: 6.3×10^{16} m$^{-2}$ at 50m
 - Kaon: 3.8×10^{14} m$^{-2}$ at 50m
 - Well separated from pion neutrinos

- ν_e and ν_μ from muon decay:
 - ~10 times as many ν_e as, e.g. J-PARC beam
 - Flavour composition, energy spectrum
 - Use for energy calibration