Status and Perspectives of KM3NeT/ORCA EPS HEP

Liam Quinn

Centre de Physique des Particules de Marseille

July 5, 2017

- **→** → **→**

Introduction Detector Layout

Figure 1: An artist's impression of KM3NeT.

<ロ> <同> <同> < 同> < 同>

Figure 2: The digital optical module (left). A prototype detection unit in the dark room at CPPM (right).

Introduction Oscillation Plots

Each zenith angle effectively corresponds to a different baseline.

Figure 3: The asymmetry $\frac{N_{IH}-N_{NH}}{N_{NH}}$ for the muon and electron channels.

ORCA Lol Results Resolutions

Figure 4: The median energy and zenith resolutions from the Lol (dashed lines are for antineutrinos).

ORCA Lol Results Oscillation Parameter Precision

Figure 5: Measurement precision in Δm_{32}^2 and $\sin^3 \theta_{23}$ after three years of data taking with ORCA, shown for three test points.

ORCA Lol Results NMH Sensitivity

Figure 6: The ORCA sensitivity to the neutrino mass hierarchy after 3 years of data taking with a full detector, as reported in the KM3NeT Lol.

New Analyses Using Lol Production Tau Appearance

- Tau neutrinos are not identified on an event by event basis
- Measuring tau appearance allows unitarity measurements

Figure 7: The per-bin significance of the detected ν_{τ} signal for a month of events classified as showers.

New Analyses Using Lol Production Tau Appearance - Significance

Figure 8: Sensitivity of the ORCA detector to appearance of ν_{τ} as a function of time. For unitary mixing, the $\nu_{\tau} - CC$ mixing is equal to one.

Letter of Intent

- Simplified detector geometry, 9m vertical separation and 20m horizontal separation
- Trigger based on L1 hits (i.e. at least two coincident photons on the same DOM in a 10ns time window)

New Analysis

- Realistic detector geometry, average 9m vertical separation and 23m horizontal separation with variation on the order of a metre
- New mixed trigger, based on a single L1 and a cluster of causally connected individual photons

Simulations Update Intermediate Results (Effective Volume)

Figure 9: The change in ORCA effective volume after reconstruction, but before particle ID, for the muon (left) and electron (right) channels.

- - E

Simulations Update Intermediate Results (Zenith Resolution)

Figure 10: The corresponding change in zenith resolution after reconstruction, but before particle ID, for the muon (left) and electron (right) channels.

- ∢ ≣ ▶

After three years of data taking with a full detector

- Determine the NMH with a significance of at least 3σ , in the worst case scenario
- Demonstrate tau appearance and constrain the unitarity of the PMNS matrix
- Measure the atmospheric oscillation parameters with a competitive precision

Furthermore, we expect our NMH sensitivity to improve substantially, with a larger instrumented volume and a new trigger.

Figure 11: The signed chi square $\sigma = \frac{N_{\text{sterile}} - N_{\text{nominal}}}{\sqrt{N_{\text{nominal}}}}$ for a single sterile neutrino with $\Delta m_{41}^2 = 0.3 eV^2$.

Figure 12: Sensitivity contours for sterile neutrinos, for both tracks and showers. Tracks are expected to dominate.

More details at arXiv:1601.07459

parameter	true value distr.	initial value distr.	treatment	prior
θ ₂₃ [°]	{40, 42, , 50}	uniform over [35, 55] †	fitted	no
θ_{13} [°]	8.42	$\mu = 8.42, \sigma = 0.26$	fitted	yes
θ_{12} [°]	34	$\mu = 34, \ \sigma = 1$	nuisance	N/A
$\Delta M^2 [10^{-3} \text{ eV}^2]$	$\mu = 2.4, \sigma = 0.05$	$\mu = 2.4, \sigma = 0.05$	fitted	no
$\Delta m^2 [10^{-5} \text{ eV}^2]$	7.6	$\mu = 7.6, \sigma = 0.2$	nuisance	N/A
δ _{CP} [°]	0	uniform over [0, 360]	fitted	no
overall flux factor	1	$\mu = 1$, $\sigma = 0.1$	fitted	yes
NC scaling	1	$\mu = 1$, $\sigma = 0.05$	fitted	yes
$\nu/\bar{\nu}$ skew	0	$\mu = 0, \ \sigma = 0.03$	fitted	yes
μ/e skew	0	$\mu = 0, \; \sigma = 0.05$	fitted	yes
energy slope	0	$\mu=$ 0, $\sigma=$ 0.05	fitted	yes

Figure 13: Default parameter settings used for the NMH analysis. Where μ and σ are given, they refer to a Gaussian distribution. The \dagger indicates that seven initial values for θ_{23} are generated. They are $x + i \times 5^{\circ}$, where x is either 35 or 55 and $i \in [-3, -2, ..., 3]$.

高 と く ヨ と く ヨ と

The following base model is used to represent standard 3-flavour oscillations:

 $\Delta m_{21}^2 = 7.54 \times 10^{-5} \text{eV}^2$ $\Delta m_{21}^2 = 2.47 \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{12} = 0.308$ $\sin^2 \theta_{13} = 0.0219$ $\sin^2 \theta_{23} = 0.437$ $\delta_{cn} = 1.39\pi$ A 3+1 model is assumed with the following sterile parameters: $\Delta m_{41}^2 = 0.3 eV^2$ $|U_{e4}|^2 = 0.04$ $|U_{\mu4}|^2 = 0.02$ $|U_{\tau 4}|^2 = 0.18$

They were chosen to be close to the 90% CL limits in early 2016 and for consistency with previous KM3NeT examples.

oscillation parameters			nuissance parameters				
parameter	true value	prior	start value	parameter	true val.	prior	start val.
θ_{12}	33.4°	fixed	fixed	norm v_e CC	1	-	1
$\Delta m^2 [eV^2]$	$7.53 imes 10^{-5}$	fixed	fixed	norm v_{μ} CC	1	-	1
θ_{13}	8.42°	0.26°	8.42°	norm v_{τ} CC	1	-	1
θ_{23}	42°	_	42° / 58°	norm v NC	1	0.31	1
$\Delta M^2 [eV^2]$	$2.44 imes 10^{-3}$	-	$2.44 imes 10^{-3}$	energy slope	0	_	0
$\delta_{\rm CP}$	0	-	0	v / \overline{v} ratio	0	0.1	0

<ロ> <同> <同> < 回> < 回>

æ