

Status and perspectives of JUNO experiment

Agnese Giaz
On the behalf of JUNO collaboration

Outline

- ✓ Introduction on neutrino oscillation parameters and neutrino mass hierarchy
- ✓ The Jiangmen Underground Neutrino Observatory (JUNO) experiment: requirements
 - The JUNO detector
 - The JUNO PMT systems
 - The JUNO electronics
- ✓ Physics with JUNO
- ✓ The project schedule
- ✓ Summary

Neutrino oscillations

3 flavor eigenstates:

$$|\nu_e\rangle, |\nu_\mu\rangle, |\nu_\tau\rangle$$

3 mass eigenstates:

$$|\nu_1\rangle, |\nu_2\rangle, |\nu_3\rangle$$

They are mixed:

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$
 Pontecorvo – Maki – Nakagawa – Sakata (PMNS) matrix

Pontecorvo – Maki – (PMNS) matrix

The mixing matrix can be expressed as follow:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P_{\nu},$$

 $c_{ij} \equiv cos\theta_{ij}, \ s_{ij} \equiv sin\theta_{ij}$

 $P_{\nu} = Diag \{ e^{i\rho} \ e^{i\sigma} , 1 \}$ Majorana phase matrix, $\delta \rightarrow$ CP violation phase

We don't know:

- \checkmark the value of δ ;
- ✓ the neutrino mass ordering;
- ✓ if there are sterile neutrinos (physics beyond the SM).

Neutrino mass hierarchy

 v_3 neutrino mass eigenstate is heavier or lighter than the v_1 and v_1 (fundamental aspect of SM lepton sector)?

Mass hierarchy determination impacts in the quest of the neutrino nature (Dirac or Majorana mass terms - theory of flavor).

JUNO Experiment

JUNO: Jiangmen Underground Neutrino Observatory

It is a large liquid scintillator neutrino detector under construction in the south of China.

 $\overline{\nu}_{\rm e}$ source: 2 nuclear power plants at ~53 km distance, 10 cores, total of 35.8 GW thermal power (26.6 GW by start of data taking around 2020).

Detector site chosen with respect to optimal mean distance to the cores

- ✓ Detection channel: $\bar{\nu}_e + p \rightarrow e^+ + n$
- ✓ Expected $\overline{\nu}_{e}$ event rate: 83 per day

JUNO detector

Central detector: ~ 20 kton of active mass of LAB scintillator (sphere of 35.4 m in diameter), it has unprecedented energy resolution (3% at 1 MeV)

Light detection: 18000 20" PMTs and 25000 3" PMTs (two independent PMT systems, coverage > 75%)

The detector is overburden of about 700 m.

Top tracker: solid scintillator.

Water pool: Cherenkov veto, 44 m deep and 43.5 m high. The PMTs and the electronics will be under water.

Design goals:

- ✓ Large target mass
- ✓ Excellent energy resolution
- ✓ Low energy scale uncertainty less than 1%.

JUNO PMT systems

Design goal: 1.2k p.e. / MeV **Requirements:**

- ✓ High optical coverage
- ✓ High photon detection efficiency
- ✓ Acceptable noise / radio purity levels
- ✓ Acceptable time resolution (event reconstruction)
- ✓ Broad dynamic range

JUNO will have two independent Double calorimetry PMT systems.

18 k large 20" PMTs

- ✓ 75% coverage
- ✓ Stochastic term: 3% / sqrt(E)
- ✓ Slower + worse p.e. resolution
- ✓ High dark noise

25 k large 3" PMTs

- √ 3% coverage
- ✓ Stochastic term: 14% / sqrt(E)
- ✓ Faster + better p.e. resolution
- ✓ Low dark noise

JUNO electronics

The readout architecture of JUNO PMT signal is designed with following functions take place in a watertight box strictly coupled and sealed with the PMT:

- ✓ signal conditioning and digitization,
- ✓ trigger primitive generation,
- √ segment buffering,
- ✓ calibration and synchronization tasks,
- ✓ selective data readout,
- ✓ HV control,
- ✓ system monitoring,
- ✓ baseline control.

100 m ethernet cable to BEC and to DAQ.

PMT

Constraints:

- Inaccessibility after installation.
- Minimize the power consumption and cost per channel.
- Minimize the number of cables and waterproof connectors.

Physics with JUNO

MAIN PHYSICS WITH JUNO: determination of the neutrino mass hierarchy with good sensitivity (3σ after 6 years) and to precisely measure the neutrino mixing parameters: $\sin^2\theta_{12}$ current precision 4.1 % with **JUNO below 1**%

 Δm_{21}^2 current precision 2.3 % with JUNO below 1%

 Δm_{ee}^2 current precision 1.6 % with JUNO below 1%

OTHER PHYSICS WITH JUNO:

- ✓ like supernova burst and diffuse supernova neutrinos (10⁴ events from a burst @ 10 kpc, information on SN model),
- ✓ solar neutrinos (information on ⁷Be flux and ⁸B solar neutrinos),
- ✓ atmospheric neutrinos,
- ✓ geo-neutrinos (~400 events/year, information on U/Th ratio),
- ✓ nucleon decay (information on p \rightarrow K⁺ + $\overline{\nu}_{e}$),
- ✓ indirect dark matter searches
- **√** ...

JUNO schedule

- ✓ 2013 Funding approved
- ✓ 2014 Collaboration officially formed
- ✓ 2014 2018 Civil construction
- ✓ 2016 2019 Detector component and PMT production
- ✓ 2018 2019 Detector assembly & installation
- ✓ 2020 Liquid scintillator filling
- ✓ 2020 Start of data taking

Summary

- ✓ JUNO is a multipurpose reactor neutrino experiment under construction in China
- ✓ The mass hierarchy determination on 3σ after 6 years or even better
- ✓ Significant improvement of the uncertainty of $\sin^2\theta_{12}$, Δm_{21}^2 and Δm_{ee}^2
- ✓ Data for other investigations: supernovae, solar, atmospheric and geoneutrinos, proton decay, ...
- ✓ The detector is under construction and it is expected
 to start data taking in 2020