Higgs Measurements at a Future Circular Collider

Katharina Behr

EPS-HEP 2017 7 July 2017

The Case for Future Colliders

What we found at the LHC...

A Higgs boson. $m_h = 125$ GeV, $\Gamma_h = 4.1$ MeV

... and what is still missing.

- Dark matter/energy?
- Origin of neutrino masses?

- On-going and diverse LHC physics programme...
 - Run 2+3: 300 fb⁻¹ by 2023
- ... but need to plan for post-LHC era now!

Is it the SM Higgs?

- ► Couplings to lightest fermions (*e*, *u*, *d*, *s*)
- Higgs potential: trilinear+quartic couplings

• HL-LHC: 3000 fb⁻¹ by 2035

Is it a key to BSM physics?

- Precision on b, τ, \dots couplings Sub-percent precision for $\Lambda \approx O(1 - 10)$ TeV!
- Invisible decays to DM?

Many promising options with complementary physics programmes

Katharina Behr

Higgs@FCC

A Future Circular Collider (FCC)

- ► FCC international collaboration
- ▶ Studying options for circular collider(s) in a new ~100 km tunnel at CERN
- Kick-off meeting in 2014; latest news: FCC Week Berlin
- ▶ Goal: CDR and cost review in 2018

- **FCC-ee** [TLEP]: e^+e^- collider at 90-350 GeV
 - Could start in 2038 (after HL-LHC)
- FCC-hh: pp collider at 100 TeV
 - In the same tunnel
- FCC-eh: ep collider
 - See next talk

Similar studies in China: CepC, followed by SppC

FCC Projected Luminosity

Tomorrow: EW@FCC-ee Elisabeth Locci

	FCC-ee Z	FCC-ee WW	FCC-ee H	FCC-ee TOP	FCC-hh
√s [GeV]	90	160	240	350	100,000
Inst. Lumi [10 ³⁴ cm ⁻² s ⁻¹ /IP]	65, then 130	20	7	2.0	5-30
Physics goal [ab ⁻¹]	150	8-10	5	1.5	17.5
Runtime [yrs]	6	2	3	3	20

Assuming baseline optics with 2IPs. Runtime estimate tentative.

 Steepling falling luminosity due to bremsstrahlung losses \$\approx E^4/R\$

FCC - Higgs Factories

FCC-ee

- ▶ $\sigma(e^+e^- \rightarrow h + X) \approx 200 \text{ fb}$
- ▶ 2 · 10⁶ Higgs events
- Low backgrounds, no pile-up

FCC-hh

- ► $\sigma(pp \rightarrow h + X) \approx 900 \text{ pb}$ $\Rightarrow 18 \times \text{LHC cross-section at 13 TeV}$
- ▶ 2 · 10¹⁰ Higgs event
- Optimal conditions for Higgs precision measurements and BSM searches!

The Key to Higgs Precision at FCC-ee

• Production cross-section $\sigma_{hZ} \propto g_{hZ}^2$

- Sensitive to BSM physics that renormalises Higgs couplings by universal factor
- Determination of absolute couplings and total width $\Gamma_{tot} \propto \frac{\sigma}{\sigma_{tax} \times F}$

$$\frac{\sigma_{hZ}^2}{\sigma_{hZ} \times BR(h \rightarrow ZZ)}$$

- Recoil method: tag events independent of Higgs boson decay
 - Unique to lepton colliders
 - Model-independent measurement!

Results for 5 ab^{-1} at 240 GeV

- $\blacktriangleright \quad \delta\sigma_{hZ}/\sigma_{hZ} \approx 0.4\% \Rightarrow \delta g_{hZ}/g_{hZ} \approx 0.2\%$
- ► Probe $\Lambda \approx 3$ TeV

Higgs Couplings

- Measure $\sigma(e^+e^- \to Zh) \cdot BR(h \to X)$ by tagging X
- Couplings from global, model-independent fit to measured values in all final states
- Combining measurements at 240 and 350 GeV

in %	HL-LHC	FCC-ee	
gнz	2-4	0.21	
9 нw	2-5	0.43	
9 нь	5-7	0.64	
9 Hc	-	1.04	
9 нց	3-5	1.18	
g _{Hτ}	5-8	0.81	
9 нμ	5	8.79	
9 н7	2-5	2.12	
Гн	5-8%	1.55	

arXiv:1307.7135 arXiv:1308.6176

- Factor 10 improvement in most cases!
- FCC-ee numbers obtained for CMS-like detector
- Studies with alternative detector configurations (e.g. ILD) under way

Electron Yukawa Coupling

- Resonant *s*-channel production: $\sigma(e^+e^- \rightarrow h) = 1.64$ fb
- Reduced by factor x due to
 - Initial-state photon radiation
 - Beam energy spread δs
- Total reduction x=0.17 at $\delta s = \Gamma_h$
 - Via monochromatisation

- Preliminary study based on "cut-and-count" in 10 different decay channels
- **Baseline**: $\delta s = 6$ MeV, L=2 ab⁻¹
- Optimised: $\delta s = 10$ MeV, L=7 ab⁻¹
- ▶ 95% CL upper bound on y_e: 3.5× SM expectation

Invisible Higgs Decays

- SM: BR $(h \rightarrow ZZ^* \rightarrow 2\nu 2\bar{\nu}) = 0.1\%$
- ▶ Significantly enhanced in various BSM models, e.g. Higgs portal models
- ▶ Current LHC upper limit: $BR_{95\%}(h \rightarrow inv) < 25\%$ [Signatures: VBF, $Z(\ell\ell)h$, V(jj)h]

- Missing mass from recoil method
- Sensitivity depends on
 - Tracking resolution (CMS vs ILD)
 - Beam energy spread

	BR _{95%limit}	$BR_{5\sigma}$
CMS-like	$0.92 \pm 0.32\%$	$2.5 \pm 0.2\%$
ILD-like	$0.63 \pm 0.22\%$	$1.7 \pm 0.1\%$

- Results for $Z \rightarrow \ell \ell$ and L=3.5 ab⁻¹
- $Z \rightarrow q\bar{q}$ and update to L=5.0 ab⁻¹ under study

Invisible Higgs Decays and DM

- ▶ Re-interpretation in terms of DM-nucleon cross-section
- $\blacktriangleright\,$ FCC-ee competitive with future direct-detection experiments for $m_{\rm DM} < 10$ GeV

Complementarities

- Studies on-going to optimise FCC-ee detector design(s)
- Synergies with non-Higgs measurements (EW, diboson, top) not considered

- FCC-ee drives sensitivity for many properties
- Notable exceptions: due to luminosity constraints above the hh and tt thresholds
 - Higgs self coupling

11/12

 Top Yukawa coupling (e.g. via tth/ttZ ratio)

- $g \xrightarrow{t} h$
- Crucial inputs to FCC-hh from FCC-ee (e.g. Γ_{tot} , $t\bar{t}Z$ coupling)

Summary and Outlook

► FCC programme provides exciting opportunities for Higgs and BSM physics

- Precision measurements of couplings to gauge bosons and fermions
- Measurements of trilinear and quartic couplings
- Searches for invisible and rare Higgs decays
- ...
- Complementarity between FCC-ee and FCC-hh
- Success of Higgs programme depends on developments in other fields
 - Advancements in beam optics
 - Optimisation of detector design(s)
 - Reduction of uncertainty on theoretical predictions

Goal: $\Delta_{\rm th.} \ll \Delta_{\rm exp.}$, currently: $\Delta_{\rm th.} \approx \mathcal{O}(1\%)$

- CDR and cost estimate in 2018
- Stay tuned for new results!

THANK YOU!

13/12

- FCC-hh Higgs Physics (2016): Contino et al. [arxiv:1606.09408]
- FCC-ep Baseline: EDMS 17979910 FCC-ACC-RPT-0012 V1.0, 6 April, 2017
- LEP3 Note: CMS NOTE 2012/003 [arxiv:1208.1662]
- TLEP Paper: JHEP 01 (2014) 164 [arxiv:1308.6176]

Many thanks to Markus Kluthe, Alain Blondel, and Christophe Grojean for their input!

Additional Material

15/12

Higgs Total Width

16/12

Key observation $\Gamma(h \rightarrow ZZ) \propto \sigma_{hZ}$

▶ Select Higgsstrahlungs events with $h \rightarrow ZZ$

 $\blacktriangleright \quad \Gamma_{\rm tot} = \frac{\Gamma(h \to ZZ)}{{\rm BR}(h \to ZZ)} \propto \frac{\sigma_{hZ}^2}{\sigma_{hZ} \times {\rm BR}(h \to ZZ)}$

- Same argument for VBF production with $h \rightarrow WW$
- Combine measurements at 240 GeV and 350 GeV for optimal precision

CP Structure of Higgs-Fermion Couplings

BSM physics may lead to CP violation in Higgs-fermion couplings

$$\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + i\gamma_5\sin\Delta)f$$
 (1)

▶ CP phase
$$\Delta$$
 from spin of $f\bar{f}$ final state

- $\blacktriangleright \ h \rightarrow \tau \tau$ provides complex, yet clean enough final state
- Focus on $au o
 ho^{\pm}
 u_{ au} o \pi^{\pm} \pi^0
 u_{ au}$ decay (25% BR)

Exotic Higgs Decays

18/12

Why Higgs Precision Measurements?

▶ BSM states at scale $\Lambda \Rightarrow$ Higgs couplings g_{hXX} deviate from SM expectation

- Model-independent description via SM Effective Field Theory (EFT)
- Coupling of BSM states g^* where usually $g^* = 1$ is assumed

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$$
 with dim-6 operators \mathcal{O}_i

 $\begin{array}{l} \mbox{Relative change of Higgs couplings} \\ \\ \label{eq:gbxx} \frac{\delta g_{hXX}}{g_{hXX}^{\rm SM}} \leq 5\% \cdot \left(\frac{g^*}{1}\right) \cdot \left(\frac{1 {\rm TeV}}{\Lambda}\right)^2 \end{array}$

▶ Need sub-percent precision to probe $\Lambda \approx O(1-10)$ TeV!

Higgs Trilinear Coupling

- FCC-hh
 - Direct measurements from Higgs pair production
 - Need sufficient statistics above hh threshold

► FCC-ee

- Indirect measurement via NLO loop corrections to σ_{hZ} (model-dependent)
- Benefit from high precision on σ_{hZ}

- Large crossing angle θ and narrow beam (small σ_z/σ_x)
- > Rotate β -function waist to be parallel to direction of other beam
- M. Zobov et al. [arxiv:1608.06150]

