Search for Higgs-like particle produced in association with b quarks and measurement of $Z \rightarrow b\bar{b}$ cross section at CDF II

Emanuele Michielin on behalf of the CDF collaboration

University and INFN of Padova

EPS-HEP 2017
July 6th 2017 – Venice, Italy
What if we missed something at low mass?

Di-jet searches at the LHC are pushing the limits for New Physics to really high masses. At low mass (100-300 GeV/c\(^2\)) they are limited by the possibility to trigger low energy \(b\)-jets

CDF II data can help to fill this gap

Outline

- The \(b\)-jet enriched data sample
- Inclusive \(Z \to b\bar{b}\) measurement
- Inclusive \(H \to b\bar{b}\) limit
- \(b\phi \to b\bar{b}b\) limit, \(\phi\) Higgs-like particle
b-jet enriched data sample

Overwhelming background from QCD multijet production

Smart on-line selection is a key point for these searches

Triggering on b-jets

- Two jets with low energy thresholds (15 GeV/c²)
- Fast $O(10 \mu s)$ and efficient (40%) on-line b-tagging on one jet

 - 5% efficiency for $Z \rightarrow b\bar{b}$
 - 10% efficiency for $H \rightarrow b\bar{b}$

- 5.4 fb$^{-1}$ of integrated luminosity

b-jet identification at CDF

- Displaced vertex
- L_{xy} cut
- Vertex mass separation

Performance:
40% efficiency on b-jets
1% fake rate (light jets)
Measurement of inclusive $Z \rightarrow b\bar{b}$ cross section

$Z \rightarrow b\bar{b}$ signal hidden among the overwhelming backgrounds:

- Irreducible QCD b-jets pairs
- c and light quarks initiated jets tagged as b-jet

Challenging search, but from high pain, high gain!

The $Z \rightarrow b\bar{b}$ as a standard candle to ..

- Determine the Jet Energy Scale ($E_{\text{data}}/E_{\text{MC}}$) for b-jets
- Confirm the correctness of all the tools
- Validate the background modeling for the other searches
Measurement of inclusive $Z \rightarrow b\bar{b}$ cross section

Analysis strategy

- Signal searched in a sample with two b-tagged jets
- Fit to the invariant mass of the two leading jets using:
 - QCD multijet background templates from data driven technique
 - $Z \rightarrow b\bar{b}$ signal template from Monte Carlo simulation

Background templates

1. Sample with a single b-tagged jet and another untagged jet (Bx)
2. Non-b component removed from the single b-tagged sample with a cut on the Secondary Vertex mass
3. b-tagging parametrizations from simulations for the different jet flavors
4. b-tagging parametrizations to simulate the bias on the untagged jet

Templates for Bb, Bc and Bq backgrounds
Measurement of inclusive $Z \to b\bar{b}$ cross section

Fit to the double b-tagged sample

CDF II Preliminary 5.4 fb$^{-1}$

Binned maximum likelihood fit

CDF II Preliminary 5.4 fb$^{-1}$

Component Fitted yield in events

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \to bb$</td>
<td>$(16.5 \pm 1.2) \times 10^3$</td>
</tr>
<tr>
<td>$Bb+Cb$</td>
<td>$(68.1 \pm 1.1) \times 10^4$</td>
</tr>
<tr>
<td>$bB+bC$</td>
<td>$(19.4 \pm 1.3) \times 10^4$</td>
</tr>
<tr>
<td>Bq</td>
<td>$< 175 (1\sigma)$</td>
</tr>
<tr>
<td>qB</td>
<td>$< 61 (1\sigma)$</td>
</tr>
</tbody>
</table>

No light quark initiated jets in the double b-tagged sample

More than 5σ significance including systematics

Measurement:

$$\sigma(p\bar{p} \to Z)B(Z \to b\bar{b}) = 1.11 \pm 0.08(\text{stat}) \pm 0.13(\text{sys}) \text{ nb}$$

Theoretical NLO prediction:

$$\sigma(p\bar{p} \to Z)B(Z \to b\bar{b}) = 1.13 \pm 0.02 \text{ nb}$$

Residual b-Jet Energy Scale:

$$\text{JES} = 0.993 \pm 0.022 \pm 0.015$$

Data-background

CDF II Preliminary 5.4 fb$^{-1}$

CDF data - multijet bkg

Z\tobb PYTHIA 6.2
Limit on the inclusive Standard Model $H \rightarrow b\bar{b}$

Testing a different production mechanism with respect to the one that led to the Tevatron $H \rightarrow b\bar{b}$ evidence

Search validated by the $Z \rightarrow b\bar{b}$ measurement:

- Same event selection
- Same background modeling

Very low $S/\sqrt{B} \sim 0.04$

Upper limit set using CL$_S$ method

Test statistic: χ^2 difference between fits in the B or S+B hypothesis

Result

Observed (expected) limit at 95% C.L. 33 (46) times the Standard Model cross section
Search for $\phi b \rightarrow b\bar{b}b$ process

Signal signature

Narrow neutral scalar ϕ into a b quark pair
Additional third b quark to reduce the background

- Bump in $m_{b\bar{b}}$, taken as 2 leading jets invariant mass

Motivation

This search can be included in various theoretical models:

- MSSM Higgs sector
- Dark-matter models with mediator particles with a large coupling to b quarks

The analysis is left in a general context of exotic resonance searches

Tevatron previous combined result (2012)

2σ excess
Search for $\phi b \rightarrow b\bar{b}b$ process

Analysis strategy

- Signal searched in a sample with three b-tagged jets
- Signal and background modeling based on 2D templates: x_{tag} vs invariant mass m_{12}
- x_{tag} variable sensitive to the flavor of the jet, carries the information of the SV mass

Background templates

- Starting point: double b-tagged sample
- b-tagging parametrizations applied to the third untagged jet

![Graphs showing background templates](image-url)
Search for $\phi b \rightarrow b \bar{b} b$ process

2D-fit to triple b-tagged data sample

Best fit w/o signal (projection in m_{12})

Best fit with signal (projection in m_{12})

Fit and background templates validated in a control sample

Upper limit set using CL$_S$ method

Test statistic: χ^2 difference between fits in the B or S+B hypothesis

Systematics uncertainties included as nuisance parameters
Summary and conclusion

- Measurement of the $Z \to b\bar{b}$ cross section
 - More than 5σ significance
 - Validate the search for resonances in b-jets final states
 - Measurement of the b-Jet Energy Scale

- Limit on the inclusive Standard Model $H \to b\bar{b}$
 - First limit on the inclusive $H \to b\bar{b}$ process

- Limit on the $\phi b \to b\bar{b}b$ process
 - Best limit on the $\sigma \times B$ in the low mass range
 - No excess in the “hot” region $100 - 150$ GeV/c^2 found

Tevatron datasets can still give important input to Physics, especially in region of the phase-space not well covered by LHC experiments.
Backup
b-tagging data/MC scale factors

CDF II Preliminary 5.4 fb1

CDF data

$\frac{f(E_T)}{E_T} = 0.678$

$\frac{f(E_T)}{E_T} = 0.823 - 0.003 E_T$

CDF II Preliminary 5.4 fb1

CDF data

$\frac{f(E_T)}{E_T} = 0.863$

$\frac{f(E_T)}{E_T} = 0.897 - 0.001 E_T$
$Z \rightarrow b\bar{b}$ systematic uncertainties

CDF II Preliminary 5.4 fb$^{-1}$

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty</th>
<th>b-Jet Energy Scale</th>
<th>$Z \rightarrow b\bar{b}$ cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td></td>
<td></td>
<td>5.9%</td>
</tr>
<tr>
<td>Background template statistics</td>
<td>0.004</td>
<td>2.3%</td>
<td></td>
</tr>
<tr>
<td>c-quark component in $b\bar{b}$ templates</td>
<td>0.005</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Signal Monte Carlo statistics</td>
<td>0.002</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>b-tag energy dependence</td>
<td>0.004</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>b-tag scale factor</td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Trigger and b-tag combined scale factor</td>
<td></td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td>Jet Energy Correction</td>
<td></td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>Final State Radiation</td>
<td></td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>Parton Distribution Functions</td>
<td></td>
<td>1.1%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.008</td>
<td>11.4%</td>
<td></td>
</tr>
</tbody>
</table>
\(\phi b \to b\bar{b}b \) control sample

Fit to the triple tagged sample, with one of the jet negative tagged (mistag)

CDF II Preliminary 5.4 fb\(^{-1} \)
\(\phi b \rightarrow \bar{b}b \bar{b} \) systematic uncertainties

CDF II Preliminary 5.4 fb\(^{-1}\)

Systematic uncertainties on the \(\phi b \rightarrow \bar{b}b \bar{b} \) search

<table>
<thead>
<tr>
<th>Source</th>
<th>Variation</th>
<th>Applies to</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>5.9%</td>
<td>signal</td>
<td>rate</td>
</tr>
<tr>
<td>Offline b-tag</td>
<td>5% per jet</td>
<td>signal</td>
<td>rate</td>
</tr>
<tr>
<td>Online and offline b-tag combined</td>
<td>4%</td>
<td>signal</td>
<td>rate</td>
</tr>
<tr>
<td>JES</td>
<td>7 – 4%</td>
<td>signal</td>
<td>rate/shape</td>
</tr>
<tr>
<td>(x_{\text{tag}})</td>
<td>3%</td>
<td>signal</td>
<td>shape</td>
</tr>
<tr>
<td>PDFs</td>
<td>2%</td>
<td>signal</td>
<td>rate</td>
</tr>
<tr>
<td>Template stat. uncertainty</td>
<td>-</td>
<td>background</td>
<td>shape</td>
</tr>
<tr>
<td>Heavy flavor normalization</td>
<td>5%</td>
<td>background</td>
<td>rate</td>
</tr>
</tbody>
</table>