Search for Higgs-like particle produced in association with b quarks and measurement of $Z \rightarrow b\bar{b}$ cross section at CDF II

Emanuele Michielin on behalf of the CDF collaboration

University and INFN of Padova

EPS-HEP 2017 July 6th 2017 – Venice, Italy

What if we missed something at low mass?

Di-jet searches at the LHC are pushing the limits for New Physics to really high masses. At low mass (100-300 GeV/c^2) they are limited by the possibility to trigger low energy *b*-jets

CDF II data can help to fill this gap

• $b\phi \rightarrow b\bar{b}b$ limit, ϕ Higgs-like particle

b-jet enriched data sample

Overwhelming background from QCD multijet production

 $b\mathchar`-jet$ identification at CDF

- Displaced vertex
- L_{xy} cut
- Vertex mass separation

Performance: 40% efficiency on *b*-jets 1% fake rate (light jets) Smart on-line selection is a key point for these searches

Triggering on *b*-jets • TNS.2009.2020405

- Two jets with low energy thresholds (15 GeV/c^2)
- Fast $\mathcal{O}(10\mu s)$ and efficient (40%) on-line b-tagging on one jet

5% efficiency for $Z \to b\bar{b}$ 10% efficiency for $H \to b\bar{b}$

• 5.4 fb⁻¹ of integrated luminosity

Measurement of inclusive $Z \to b\bar{b}$ cross section

 $Z \to b \bar{b}$ signal hidden among the overwhelming backgrounds:

- Irreducible QCD *b*-jets pairs
- c and light quarks initiated jets tagged as b-jet

Challenging search, but from high pain, high gain!

The $Z \to b\bar{b}$ as a standard candle to ..

- Determine the Jet Energy Scale $(\rm E_{data}/\rm E_{MC})$ for b-jets
- Confirm the correctness of all the tools
- Validate the background modeling for the other searches

Measurement of inclusive $Z \to b\bar{b}$ cross section

Analysis strategy • CDF-PUB-11228

- Signal searched in a sample with two *b*-tagged jets
- Fit to the invariant mass of the two leading jets using:
 - ▶ QCD multijet background templates from data driven technique
 - ▶ $Z \rightarrow b\bar{b}$ signal template from Monte Carlo simulation

Background templates

- 1 Sample with a single b-tagged jet and another untagged jet (Bx)
- 2 Non-*b* component removed from the single *b*-tagged sample with a cut on the Secondary Vertex mass
- 3 b-tagging parametrizations from simulations for the different jet flavors
- 4 *b*-tagging parametrizations to simulate the bias on the untagged jet

Templates for Bb, Bc and Bq backgrounds

Measurement of inclusive $Z \to b\bar{b}$ cross section

Fit to the double b-tagged sample

More than 5σ significance including systematics Measurement:

$$\sigma(p\bar{p} \to Z)\mathcal{B}(Z \to b\bar{b}) = 1.11 \pm 0.08(stat) \pm 0.13(sys) \text{ nb}$$

Theoretical NLO prediction:

$$\sigma(p\bar{p} \to Z)\mathcal{B}(Z \to b\bar{b}) = 1.13 \pm 0.02 \text{ nb}$$

Residual *b*-Jet Energy Scale:

$$JES = 0.993 \pm 0.022 \pm 0.015$$

 $\begin{array}{l} \mbox{Binned maximum likelihood fit} \\ \mbox{CDF II Preliminary 5.4 fb}^{-1} \\ \mbox{Component Fitted yield in events} \\ \hline $Z \rightarrow bb$ & (16.5 \pm 1.2) \times 10^3$ \\ \mbox{Bb} + Cb$ & (68.1 \pm 1.1) \times 10^4$ \\ \mbox{Bb} + bC$ & (19.4 \pm 1.3) \times 10^4$ \\ \mbox{Bq} & < 175 (1\sigma)$ \\ \mbox{qB} & < 61 (1\sigma) \\ \end{array}$

No light quark initiated jets in the double *b*-tagged sample

Data-background

6/16

Limit on the inclusive Standard Model $H \to b\bar{b}$

Testing a different production mechanism with respect to the one that led to the Tevatron $H\to b\bar{b}$ evidence

▶ CDF-PUB-11228

Search validated by the $Z \rightarrow b\bar{b}$ measurement:

- Same event selection
- Same background modeling
- Very low S/ $\sqrt{\rm B}~\sim 0.04$

Upper limit set using CL_S method Test statistic: χ^2 difference between fits in the B or S+B hypothesis

Result

Observed(expected) limit at 95% C.L. 33 (46) times the Standard Model cross section

Search for $\phi b \to b \bar{b} b$ process

Signal signature

Narrow neutral scalar ϕ into a *b* quark pair Additional third *b* quark to reduce the background

• Bump in $m_{b\bar{b}}$, taken as 2 leading jets invariant mass

This search can be included in various theoretical models:

- MSSM Higgs sector
- Dark-matter models with mediator particles with a large coupling to b quarks

The analysis is left in a general context of exotic resonance searches

Tevatron previous combined result (2012) 2σ excess

▶ PRD 86.091101

Search for $\phi b \to b \bar{b} b$ process

Analysis strategy • CDF-PUB-11229

- Signal searched in a sample with three b-tagged jets
- Signal and background modeling based on 2D templates: $x_{\rm tag}$ vs invariant mass m_{12}
- x_{tag} variable sensitive to the flavor of the jet, carries the information of the SV mass

Background templates

- Starting point: double *b*-tagged sample
- b-tagging parametrizations applied to the third untagged jet

Search for $\phi b \to b \bar{b} b$ process

2D-fit to triple *b*-tagged data sample

Summary and conclusion

- Measurement of the $Z \to b\bar{b}$ cross section
 - More than 5σ significance
 - ▶ Validate the search for resonances in *b*-jets final states
 - ▶ Measurement of the *b*-Jet Energy Scale
- Limit on the inclusive Standard Model $H \to b \bar{b}$
 - First limit on the inclusive $H \to b\bar{b}$ process
- Limit on the $\phi b \rightarrow b \bar{b} b$ process
 - Best limit on the $\sigma \times \mathcal{B}$ in the low mass range
 - ▶ No excess in the "hot" region $100 150 \text{ GeV}/\text{c}^2$ found

Tevatron datasets can still give important input to Physics, especially in region of the phace-space not well covered by LHC experiments

b-tagging data/MC scale factors

$Z \to b \bar{b}$ systematic uncertainties

	Systematic uncertainty		
Source	$b\mathchar`-Jet$ Energy Scale	$Z \to b\bar{b}$ cross section	
Luminosity		5.9%	
Background template statistics	0.004	2.3%	
c -quark component in $b\bar{b}$ templates	0.005	2%	
Signal Monte Carlo statistics	0.002	3%	
b-tag energy dependence	0.004	5%	
b-tag scale factor		5%	
Trigger and b -tag combined scale factor		4%	
Jet Energy Correction		1.4%	
Final State Radiation		2.6%	
Parton Distribution Functions		1.1%	
Total	0.008	11.4%	

CDF II Preliminary 5.4 $\rm fb^{-1}$

$\phi b \rightarrow b \bar{b} b$ control sample

Fit to the triple tagged sample, with one of the jet negative tagged (mistag) CDF II Preliminary 5.4 fb⁻¹

$\phi b \rightarrow b \bar{b} b$ systematic uncertainties

CDF II Preliminary 5.4 $\rm fb^{-1}$

a		. 1	17	1 1 1	1
Suctomotio	uncontointiog	on the	4h \	hhh	aconch
ovstematic	Intrentantities.	on the	$(m) \rightarrow$		Search
O y DUUIIIUUIU	uncor ounioroo	on uno	ψv	000	DOULOIL
v			(

Source	Variation	Applies to	Type
Luminosity	5.9%	signal	rate
Offline b-tag	5% per jet	signal	rate
Online and offline b-tag combined	4%	signal	rate
$_{ m JES}$	7 - 4%	signal	rate/shape
$x_{ m tag}$	3%	signal	shape
PDFs	2%	signal	rate
Template stat. uncertainty	-	background	shape
Heavy flavor normalization	5%	background	rate